RF-UI: Continuous User Identification Through Gaits Using RFID
Continuous user identification could facilitate large-scale identity-based services, potentially including access control, security management, personalized services, and beyond. Although current RFID-based user identification systems demonstrate effective performance in single-user scenarios, they...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cognitive communications and networking 2024-10, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on cognitive communications and networking |
container_volume | |
creator | Yang, Zhixiong Zhen, Ziyi Xu, Hui Zhang, Yajun Feng, Xinlong |
description | Continuous user identification could facilitate large-scale identity-based services, potentially including access control, security management, personalized services, and beyond. Although current RFID-based user identification systems demonstrate effective performance in single-user scenarios, they exhibit a lack of robustness and accuracy when extended to multi-user environments. In this paper, we propose RF-UI, a low-cost continuous user identification system that can tolerate different interference factors (e.g., appearance changes, inconsistent walking paths). The intuition underlying our design is that when multiple users traverse the radio gate sequentially, the received signal is dominated by the user traversing the radio gate. We develop an algorithm that utilizes phase energy fluctuation to separate signals from different users and extract valid gait-related patterns by applying neighborhood energy sliding windows. Then, we construct a Joint Similarity Matrix (JSM) for characterizing gait features that are robust against various interference factors. Finally, RF-UI achieves cost-effective data augmentation through the deployment of only a few additional tags. Extensive experiments show that RF-UI achieved an accuracy of 94% under various interference factors and maintained a high accuracy of 92.8% in continuous user identification. |
doi_str_mv | 10.1109/TCCN.2024.3486076 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCCN_2024_3486076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10734365</ieee_id><sourcerecordid>10_1109_TCCN_2024_3486076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c635-7b8cb20b46a1a1351f57712d59134b751303b53fa2bc712152646215789dc0ec3</originalsourceid><addsrcrecordid>eNpNkM9Kw0AYxBdRsNQ-gOAhL5C43377J_UgSDQ1UBRKeg6bzaZd0UR2k4Nvb0J76GmGYWYOP0LugSYAdP1YZtlHwijjCfJUUiWvyIIhslgphOsLf0tWIXxRSkEyKVO-IM-7PN4XT1HWd4Prxn4M0T5YHxWNnYLWGT24vovKo-_HwzHaaDfMDdcdol1evN6Rm1Z_B7s665KU-VuZvcfbz02RvWxjI1HEqk5NzWjNpQYNKKAVSgFrxBqQ10oAUqwFtprVZspBMMnlJCpdN4Zag0sCp1vj-xC8batf7360_6uAVjOCakZQzQiqM4Jp83DaOGvtRV8hRynwH4QPVNc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>RF-UI: Continuous User Identification Through Gaits Using RFID</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Zhixiong ; Zhen, Ziyi ; Xu, Hui ; Zhang, Yajun ; Feng, Xinlong</creator><creatorcontrib>Yang, Zhixiong ; Zhen, Ziyi ; Xu, Hui ; Zhang, Yajun ; Feng, Xinlong</creatorcontrib><description>Continuous user identification could facilitate large-scale identity-based services, potentially including access control, security management, personalized services, and beyond. Although current RFID-based user identification systems demonstrate effective performance in single-user scenarios, they exhibit a lack of robustness and accuracy when extended to multi-user environments. In this paper, we propose RF-UI, a low-cost continuous user identification system that can tolerate different interference factors (e.g., appearance changes, inconsistent walking paths). The intuition underlying our design is that when multiple users traverse the radio gate sequentially, the received signal is dominated by the user traversing the radio gate. We develop an algorithm that utilizes phase energy fluctuation to separate signals from different users and extract valid gait-related patterns by applying neighborhood energy sliding windows. Then, we construct a Joint Similarity Matrix (JSM) for characterizing gait features that are robust against various interference factors. Finally, RF-UI achieves cost-effective data augmentation through the deployment of only a few additional tags. Extensive experiments show that RF-UI achieved an accuracy of 94% under various interference factors and maintained a high accuracy of 92.8% in continuous user identification.</description><identifier>ISSN: 2332-7731</identifier><identifier>EISSN: 2332-7731</identifier><identifier>DOI: 10.1109/TCCN.2024.3486076</identifier><identifier>CODEN: ITCCG7</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Authentication ; Continuous User Identification ; Feature extraction ; Gait Recognition ; Interference ; Legged locomotion ; Logic gates ; Physiology ; Radiofrequency identification ; RFID ; Security ; Tags ; Training</subject><ispartof>IEEE transactions on cognitive communications and networking, 2024-10, p.1-1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0005-5735-2087 ; 0000-0001-9396-3313 ; 0000-0001-9292-2800</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10734365$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10734365$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Zhixiong</creatorcontrib><creatorcontrib>Zhen, Ziyi</creatorcontrib><creatorcontrib>Xu, Hui</creatorcontrib><creatorcontrib>Zhang, Yajun</creatorcontrib><creatorcontrib>Feng, Xinlong</creatorcontrib><title>RF-UI: Continuous User Identification Through Gaits Using RFID</title><title>IEEE transactions on cognitive communications and networking</title><addtitle>TCCN</addtitle><description>Continuous user identification could facilitate large-scale identity-based services, potentially including access control, security management, personalized services, and beyond. Although current RFID-based user identification systems demonstrate effective performance in single-user scenarios, they exhibit a lack of robustness and accuracy when extended to multi-user environments. In this paper, we propose RF-UI, a low-cost continuous user identification system that can tolerate different interference factors (e.g., appearance changes, inconsistent walking paths). The intuition underlying our design is that when multiple users traverse the radio gate sequentially, the received signal is dominated by the user traversing the radio gate. We develop an algorithm that utilizes phase energy fluctuation to separate signals from different users and extract valid gait-related patterns by applying neighborhood energy sliding windows. Then, we construct a Joint Similarity Matrix (JSM) for characterizing gait features that are robust against various interference factors. Finally, RF-UI achieves cost-effective data augmentation through the deployment of only a few additional tags. Extensive experiments show that RF-UI achieved an accuracy of 94% under various interference factors and maintained a high accuracy of 92.8% in continuous user identification.</description><subject>Accuracy</subject><subject>Authentication</subject><subject>Continuous User Identification</subject><subject>Feature extraction</subject><subject>Gait Recognition</subject><subject>Interference</subject><subject>Legged locomotion</subject><subject>Logic gates</subject><subject>Physiology</subject><subject>Radiofrequency identification</subject><subject>RFID</subject><subject>Security</subject><subject>Tags</subject><subject>Training</subject><issn>2332-7731</issn><issn>2332-7731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9Kw0AYxBdRsNQ-gOAhL5C43377J_UgSDQ1UBRKeg6bzaZd0UR2k4Nvb0J76GmGYWYOP0LugSYAdP1YZtlHwijjCfJUUiWvyIIhslgphOsLf0tWIXxRSkEyKVO-IM-7PN4XT1HWd4Prxn4M0T5YHxWNnYLWGT24vovKo-_HwzHaaDfMDdcdol1evN6Rm1Z_B7s665KU-VuZvcfbz02RvWxjI1HEqk5NzWjNpQYNKKAVSgFrxBqQ10oAUqwFtprVZspBMMnlJCpdN4Zag0sCp1vj-xC8batf7360_6uAVjOCakZQzQiqM4Jp83DaOGvtRV8hRynwH4QPVNc</recordid><startdate>20241023</startdate><enddate>20241023</enddate><creator>Yang, Zhixiong</creator><creator>Zhen, Ziyi</creator><creator>Xu, Hui</creator><creator>Zhang, Yajun</creator><creator>Feng, Xinlong</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0005-5735-2087</orcidid><orcidid>https://orcid.org/0000-0001-9396-3313</orcidid><orcidid>https://orcid.org/0000-0001-9292-2800</orcidid></search><sort><creationdate>20241023</creationdate><title>RF-UI: Continuous User Identification Through Gaits Using RFID</title><author>Yang, Zhixiong ; Zhen, Ziyi ; Xu, Hui ; Zhang, Yajun ; Feng, Xinlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c635-7b8cb20b46a1a1351f57712d59134b751303b53fa2bc712152646215789dc0ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Authentication</topic><topic>Continuous User Identification</topic><topic>Feature extraction</topic><topic>Gait Recognition</topic><topic>Interference</topic><topic>Legged locomotion</topic><topic>Logic gates</topic><topic>Physiology</topic><topic>Radiofrequency identification</topic><topic>RFID</topic><topic>Security</topic><topic>Tags</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang, Zhixiong</creatorcontrib><creatorcontrib>Zhen, Ziyi</creatorcontrib><creatorcontrib>Xu, Hui</creatorcontrib><creatorcontrib>Zhang, Yajun</creatorcontrib><creatorcontrib>Feng, Xinlong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on cognitive communications and networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Zhixiong</au><au>Zhen, Ziyi</au><au>Xu, Hui</au><au>Zhang, Yajun</au><au>Feng, Xinlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RF-UI: Continuous User Identification Through Gaits Using RFID</atitle><jtitle>IEEE transactions on cognitive communications and networking</jtitle><stitle>TCCN</stitle><date>2024-10-23</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2332-7731</issn><eissn>2332-7731</eissn><coden>ITCCG7</coden><abstract>Continuous user identification could facilitate large-scale identity-based services, potentially including access control, security management, personalized services, and beyond. Although current RFID-based user identification systems demonstrate effective performance in single-user scenarios, they exhibit a lack of robustness and accuracy when extended to multi-user environments. In this paper, we propose RF-UI, a low-cost continuous user identification system that can tolerate different interference factors (e.g., appearance changes, inconsistent walking paths). The intuition underlying our design is that when multiple users traverse the radio gate sequentially, the received signal is dominated by the user traversing the radio gate. We develop an algorithm that utilizes phase energy fluctuation to separate signals from different users and extract valid gait-related patterns by applying neighborhood energy sliding windows. Then, we construct a Joint Similarity Matrix (JSM) for characterizing gait features that are robust against various interference factors. Finally, RF-UI achieves cost-effective data augmentation through the deployment of only a few additional tags. Extensive experiments show that RF-UI achieved an accuracy of 94% under various interference factors and maintained a high accuracy of 92.8% in continuous user identification.</abstract><pub>IEEE</pub><doi>10.1109/TCCN.2024.3486076</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0005-5735-2087</orcidid><orcidid>https://orcid.org/0000-0001-9396-3313</orcidid><orcidid>https://orcid.org/0000-0001-9292-2800</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2332-7731 |
ispartof | IEEE transactions on cognitive communications and networking, 2024-10, p.1-1 |
issn | 2332-7731 2332-7731 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCCN_2024_3486076 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Authentication Continuous User Identification Feature extraction Gait Recognition Interference Legged locomotion Logic gates Physiology Radiofrequency identification RFID Security Tags Training |
title | RF-UI: Continuous User Identification Through Gaits Using RFID |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T13%3A08%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RF-UI:%20Continuous%20User%20Identification%20Through%20Gaits%20Using%20RFID&rft.jtitle=IEEE%20transactions%20on%20cognitive%20communications%20and%20networking&rft.au=Yang,%20Zhixiong&rft.date=2024-10-23&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2332-7731&rft.eissn=2332-7731&rft.coden=ITCCG7&rft_id=info:doi/10.1109/TCCN.2024.3486076&rft_dat=%3Ccrossref_RIE%3E10_1109_TCCN_2024_3486076%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10734365&rfr_iscdi=true |