RF-UI: Continuous User Identification Through Gaits Using RFID

Continuous user identification could facilitate large-scale identity-based services, potentially including access control, security management, personalized services, and beyond. Although current RFID-based user identification systems demonstrate effective performance in single-user scenarios, they...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cognitive communications and networking 2024-10, p.1-1
Hauptverfasser: Yang, Zhixiong, Zhen, Ziyi, Xu, Hui, Zhang, Yajun, Feng, Xinlong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on cognitive communications and networking
container_volume
creator Yang, Zhixiong
Zhen, Ziyi
Xu, Hui
Zhang, Yajun
Feng, Xinlong
description Continuous user identification could facilitate large-scale identity-based services, potentially including access control, security management, personalized services, and beyond. Although current RFID-based user identification systems demonstrate effective performance in single-user scenarios, they exhibit a lack of robustness and accuracy when extended to multi-user environments. In this paper, we propose RF-UI, a low-cost continuous user identification system that can tolerate different interference factors (e.g., appearance changes, inconsistent walking paths). The intuition underlying our design is that when multiple users traverse the radio gate sequentially, the received signal is dominated by the user traversing the radio gate. We develop an algorithm that utilizes phase energy fluctuation to separate signals from different users and extract valid gait-related patterns by applying neighborhood energy sliding windows. Then, we construct a Joint Similarity Matrix (JSM) for characterizing gait features that are robust against various interference factors. Finally, RF-UI achieves cost-effective data augmentation through the deployment of only a few additional tags. Extensive experiments show that RF-UI achieved an accuracy of 94% under various interference factors and maintained a high accuracy of 92.8% in continuous user identification.
doi_str_mv 10.1109/TCCN.2024.3486076
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCCN_2024_3486076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10734365</ieee_id><sourcerecordid>10_1109_TCCN_2024_3486076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c635-7b8cb20b46a1a1351f57712d59134b751303b53fa2bc712152646215789dc0ec3</originalsourceid><addsrcrecordid>eNpNkM9Kw0AYxBdRsNQ-gOAhL5C43377J_UgSDQ1UBRKeg6bzaZd0UR2k4Nvb0J76GmGYWYOP0LugSYAdP1YZtlHwijjCfJUUiWvyIIhslgphOsLf0tWIXxRSkEyKVO-IM-7PN4XT1HWd4Prxn4M0T5YHxWNnYLWGT24vovKo-_HwzHaaDfMDdcdol1evN6Rm1Z_B7s665KU-VuZvcfbz02RvWxjI1HEqk5NzWjNpQYNKKAVSgFrxBqQ10oAUqwFtprVZspBMMnlJCpdN4Zag0sCp1vj-xC8batf7360_6uAVjOCakZQzQiqM4Jp83DaOGvtRV8hRynwH4QPVNc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>RF-UI: Continuous User Identification Through Gaits Using RFID</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Zhixiong ; Zhen, Ziyi ; Xu, Hui ; Zhang, Yajun ; Feng, Xinlong</creator><creatorcontrib>Yang, Zhixiong ; Zhen, Ziyi ; Xu, Hui ; Zhang, Yajun ; Feng, Xinlong</creatorcontrib><description>Continuous user identification could facilitate large-scale identity-based services, potentially including access control, security management, personalized services, and beyond. Although current RFID-based user identification systems demonstrate effective performance in single-user scenarios, they exhibit a lack of robustness and accuracy when extended to multi-user environments. In this paper, we propose RF-UI, a low-cost continuous user identification system that can tolerate different interference factors (e.g., appearance changes, inconsistent walking paths). The intuition underlying our design is that when multiple users traverse the radio gate sequentially, the received signal is dominated by the user traversing the radio gate. We develop an algorithm that utilizes phase energy fluctuation to separate signals from different users and extract valid gait-related patterns by applying neighborhood energy sliding windows. Then, we construct a Joint Similarity Matrix (JSM) for characterizing gait features that are robust against various interference factors. Finally, RF-UI achieves cost-effective data augmentation through the deployment of only a few additional tags. Extensive experiments show that RF-UI achieved an accuracy of 94% under various interference factors and maintained a high accuracy of 92.8% in continuous user identification.</description><identifier>ISSN: 2332-7731</identifier><identifier>EISSN: 2332-7731</identifier><identifier>DOI: 10.1109/TCCN.2024.3486076</identifier><identifier>CODEN: ITCCG7</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Authentication ; Continuous User Identification ; Feature extraction ; Gait Recognition ; Interference ; Legged locomotion ; Logic gates ; Physiology ; Radiofrequency identification ; RFID ; Security ; Tags ; Training</subject><ispartof>IEEE transactions on cognitive communications and networking, 2024-10, p.1-1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0005-5735-2087 ; 0000-0001-9396-3313 ; 0000-0001-9292-2800</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10734365$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10734365$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Zhixiong</creatorcontrib><creatorcontrib>Zhen, Ziyi</creatorcontrib><creatorcontrib>Xu, Hui</creatorcontrib><creatorcontrib>Zhang, Yajun</creatorcontrib><creatorcontrib>Feng, Xinlong</creatorcontrib><title>RF-UI: Continuous User Identification Through Gaits Using RFID</title><title>IEEE transactions on cognitive communications and networking</title><addtitle>TCCN</addtitle><description>Continuous user identification could facilitate large-scale identity-based services, potentially including access control, security management, personalized services, and beyond. Although current RFID-based user identification systems demonstrate effective performance in single-user scenarios, they exhibit a lack of robustness and accuracy when extended to multi-user environments. In this paper, we propose RF-UI, a low-cost continuous user identification system that can tolerate different interference factors (e.g., appearance changes, inconsistent walking paths). The intuition underlying our design is that when multiple users traverse the radio gate sequentially, the received signal is dominated by the user traversing the radio gate. We develop an algorithm that utilizes phase energy fluctuation to separate signals from different users and extract valid gait-related patterns by applying neighborhood energy sliding windows. Then, we construct a Joint Similarity Matrix (JSM) for characterizing gait features that are robust against various interference factors. Finally, RF-UI achieves cost-effective data augmentation through the deployment of only a few additional tags. Extensive experiments show that RF-UI achieved an accuracy of 94% under various interference factors and maintained a high accuracy of 92.8% in continuous user identification.</description><subject>Accuracy</subject><subject>Authentication</subject><subject>Continuous User Identification</subject><subject>Feature extraction</subject><subject>Gait Recognition</subject><subject>Interference</subject><subject>Legged locomotion</subject><subject>Logic gates</subject><subject>Physiology</subject><subject>Radiofrequency identification</subject><subject>RFID</subject><subject>Security</subject><subject>Tags</subject><subject>Training</subject><issn>2332-7731</issn><issn>2332-7731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9Kw0AYxBdRsNQ-gOAhL5C43377J_UgSDQ1UBRKeg6bzaZd0UR2k4Nvb0J76GmGYWYOP0LugSYAdP1YZtlHwijjCfJUUiWvyIIhslgphOsLf0tWIXxRSkEyKVO-IM-7PN4XT1HWd4Prxn4M0T5YHxWNnYLWGT24vovKo-_HwzHaaDfMDdcdol1evN6Rm1Z_B7s665KU-VuZvcfbz02RvWxjI1HEqk5NzWjNpQYNKKAVSgFrxBqQ10oAUqwFtprVZspBMMnlJCpdN4Zag0sCp1vj-xC8batf7360_6uAVjOCakZQzQiqM4Jp83DaOGvtRV8hRynwH4QPVNc</recordid><startdate>20241023</startdate><enddate>20241023</enddate><creator>Yang, Zhixiong</creator><creator>Zhen, Ziyi</creator><creator>Xu, Hui</creator><creator>Zhang, Yajun</creator><creator>Feng, Xinlong</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0005-5735-2087</orcidid><orcidid>https://orcid.org/0000-0001-9396-3313</orcidid><orcidid>https://orcid.org/0000-0001-9292-2800</orcidid></search><sort><creationdate>20241023</creationdate><title>RF-UI: Continuous User Identification Through Gaits Using RFID</title><author>Yang, Zhixiong ; Zhen, Ziyi ; Xu, Hui ; Zhang, Yajun ; Feng, Xinlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c635-7b8cb20b46a1a1351f57712d59134b751303b53fa2bc712152646215789dc0ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Authentication</topic><topic>Continuous User Identification</topic><topic>Feature extraction</topic><topic>Gait Recognition</topic><topic>Interference</topic><topic>Legged locomotion</topic><topic>Logic gates</topic><topic>Physiology</topic><topic>Radiofrequency identification</topic><topic>RFID</topic><topic>Security</topic><topic>Tags</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang, Zhixiong</creatorcontrib><creatorcontrib>Zhen, Ziyi</creatorcontrib><creatorcontrib>Xu, Hui</creatorcontrib><creatorcontrib>Zhang, Yajun</creatorcontrib><creatorcontrib>Feng, Xinlong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on cognitive communications and networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Zhixiong</au><au>Zhen, Ziyi</au><au>Xu, Hui</au><au>Zhang, Yajun</au><au>Feng, Xinlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RF-UI: Continuous User Identification Through Gaits Using RFID</atitle><jtitle>IEEE transactions on cognitive communications and networking</jtitle><stitle>TCCN</stitle><date>2024-10-23</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2332-7731</issn><eissn>2332-7731</eissn><coden>ITCCG7</coden><abstract>Continuous user identification could facilitate large-scale identity-based services, potentially including access control, security management, personalized services, and beyond. Although current RFID-based user identification systems demonstrate effective performance in single-user scenarios, they exhibit a lack of robustness and accuracy when extended to multi-user environments. In this paper, we propose RF-UI, a low-cost continuous user identification system that can tolerate different interference factors (e.g., appearance changes, inconsistent walking paths). The intuition underlying our design is that when multiple users traverse the radio gate sequentially, the received signal is dominated by the user traversing the radio gate. We develop an algorithm that utilizes phase energy fluctuation to separate signals from different users and extract valid gait-related patterns by applying neighborhood energy sliding windows. Then, we construct a Joint Similarity Matrix (JSM) for characterizing gait features that are robust against various interference factors. Finally, RF-UI achieves cost-effective data augmentation through the deployment of only a few additional tags. Extensive experiments show that RF-UI achieved an accuracy of 94% under various interference factors and maintained a high accuracy of 92.8% in continuous user identification.</abstract><pub>IEEE</pub><doi>10.1109/TCCN.2024.3486076</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0005-5735-2087</orcidid><orcidid>https://orcid.org/0000-0001-9396-3313</orcidid><orcidid>https://orcid.org/0000-0001-9292-2800</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2332-7731
ispartof IEEE transactions on cognitive communications and networking, 2024-10, p.1-1
issn 2332-7731
2332-7731
language eng
recordid cdi_crossref_primary_10_1109_TCCN_2024_3486076
source IEEE Electronic Library (IEL)
subjects Accuracy
Authentication
Continuous User Identification
Feature extraction
Gait Recognition
Interference
Legged locomotion
Logic gates
Physiology
Radiofrequency identification
RFID
Security
Tags
Training
title RF-UI: Continuous User Identification Through Gaits Using RFID
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T13%3A08%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RF-UI:%20Continuous%20User%20Identification%20Through%20Gaits%20Using%20RFID&rft.jtitle=IEEE%20transactions%20on%20cognitive%20communications%20and%20networking&rft.au=Yang,%20Zhixiong&rft.date=2024-10-23&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2332-7731&rft.eissn=2332-7731&rft.coden=ITCCG7&rft_id=info:doi/10.1109/TCCN.2024.3486076&rft_dat=%3Ccrossref_RIE%3E10_1109_TCCN_2024_3486076%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10734365&rfr_iscdi=true