Deep Stacked Autoencoder Based Long-Term Spectrum Prediction Using Real-World Data

Spectrum prediction is challenging due to its multi-dimension, complex inherent dependency, and heterogeneity among the spectrum data. In this paper, we first propose a stacked autoencoder (SAE) and bi-directional long short-term memory (Bi-LSTM) based spectrum prediction method (SAEL-SP). Specifica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cognitive communications and networking 2023-06, Vol.9 (3), p.1-1
Hauptverfasser: Pan, Guangliang, Wu, Qihui, Ding, Guoru, Wang, Wei, Li, Jie, Xu, Fuyuan, Zhou, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!