MedOptNet: Meta-Learning Framework for Few-Shot Medical Image Classification
In the medical research domain, limited data and high annotation costs have made efficient classification under few-shot conditions a popular research area. This paper proposes a meta-learning framework, termed MedOptNet, for few-shot medical image classification. The framework enables the use of va...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on computational biology and bioinformatics 2024-07, Vol.21 (4), p.725-736 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 736 |
---|---|
container_issue | 4 |
container_start_page | 725 |
container_title | IEEE/ACM transactions on computational biology and bioinformatics |
container_volume | 21 |
creator | Lu, Liangfu Cui, Xudong Tan, Zhiyuan Wu, Yulei |
description | In the medical research domain, limited data and high annotation costs have made efficient classification under few-shot conditions a popular research area. This paper proposes a meta-learning framework, termed MedOptNet, for few-shot medical image classification. The framework enables the use of various high-performance convex optimization models as classifiers, such as multi-class kernel support vector machines, ridge regression, and other models. End-to-end training is then implemented using dual problems and differentiation in the paper. Additionally, various regularization techniques are employed to enhance the model's generalization capabilities. Experiments on the BreakHis, ISIC2018, and Pap smear medical few-shot datasets demonstrate that the MedOptNet framework outperforms benchmark models. Moreover, the model training time is also compared to prove its effectiveness in the paper, and an ablation study is conducted to validate the effectiveness of each module. |
doi_str_mv | 10.1109/TCBB.2023.3284846 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCBB_2023_3284846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10148619</ieee_id><sourcerecordid>2825501331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-d7cbb9ee4dea82bbd2e1c38533bed6a57be7afaf187a584adbdaefb07ffb51a63</originalsourceid><addsrcrecordid>eNpNkE1Lw0AURQdRtFZ_gCCSpZvU-cxM3NliVWh1oa7Dm8wbjSZNnUkp_ntTWsXVuzzOvYtDyBmjI8ZofvUyGY9HnHIxEtxII7M9MmBK6TTPM7m_yVKlKs_EETmO8YNSLnMqD8mR0IJqZtiAzObonpbdI3bXyRw7SGcIYVEt3pJpgAbXbfhMfBuSKa7T5_e26yFXlVAnDw28YTKpIcbK95-uahcn5MBDHfF0d4fkdXr7MrlPZ093D5ObWVpyLbvU6dLaHFE6BMOtdRxZKYwSwqLLQGmLGjx4ZjQoI8FZB-gt1d5bxSATQ3K53V2G9muFsSuaKpZY17DAdhULbrhSlAnBepRt0TK0MQb0xTJUDYTvgtFiI7HYSCw2EoudxL5zsZtf2QbdX-PXWg-cb4EKEf8NMmkylosfx0h3HQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825501331</pqid></control><display><type>article</type><title>MedOptNet: Meta-Learning Framework for Few-Shot Medical Image Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Lu, Liangfu ; Cui, Xudong ; Tan, Zhiyuan ; Wu, Yulei</creator><creatorcontrib>Lu, Liangfu ; Cui, Xudong ; Tan, Zhiyuan ; Wu, Yulei</creatorcontrib><description>In the medical research domain, limited data and high annotation costs have made efficient classification under few-shot conditions a popular research area. This paper proposes a meta-learning framework, termed MedOptNet, for few-shot medical image classification. The framework enables the use of various high-performance convex optimization models as classifiers, such as multi-class kernel support vector machines, ridge regression, and other models. End-to-end training is then implemented using dual problems and differentiation in the paper. Additionally, various regularization techniques are employed to enhance the model's generalization capabilities. Experiments on the BreakHis, ISIC2018, and Pap smear medical few-shot datasets demonstrate that the MedOptNet framework outperforms benchmark models. Moreover, the model training time is also compared to prove its effectiveness in the paper, and an ablation study is conducted to validate the effectiveness of each module.</description><identifier>ISSN: 1545-5963</identifier><identifier>ISSN: 1557-9964</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2023.3284846</identifier><identifier>PMID: 37307181</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptation models ; Algorithms ; Biomedical imaging ; Computational Biology - methods ; Computational modeling ; Convex functions ; Convex optimization ; Data models ; Databases, Factual ; few-shot ; Humans ; Image Interpretation, Computer-Assisted - methods ; Machine Learning ; medical image classification ; meta learning ; Support Vector Machine ; Task analysis ; Training</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2024-07, Vol.21 (4), p.725-736</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c274t-d7cbb9ee4dea82bbd2e1c38533bed6a57be7afaf187a584adbdaefb07ffb51a63</cites><orcidid>0000-0001-5420-2554 ; 0000-0001-8731-9775 ; 0000-0002-6267-2633 ; 0000-0003-0801-8443</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10148619$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10148619$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37307181$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Liangfu</creatorcontrib><creatorcontrib>Cui, Xudong</creatorcontrib><creatorcontrib>Tan, Zhiyuan</creatorcontrib><creatorcontrib>Wu, Yulei</creatorcontrib><title>MedOptNet: Meta-Learning Framework for Few-Shot Medical Image Classification</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>In the medical research domain, limited data and high annotation costs have made efficient classification under few-shot conditions a popular research area. This paper proposes a meta-learning framework, termed MedOptNet, for few-shot medical image classification. The framework enables the use of various high-performance convex optimization models as classifiers, such as multi-class kernel support vector machines, ridge regression, and other models. End-to-end training is then implemented using dual problems and differentiation in the paper. Additionally, various regularization techniques are employed to enhance the model's generalization capabilities. Experiments on the BreakHis, ISIC2018, and Pap smear medical few-shot datasets demonstrate that the MedOptNet framework outperforms benchmark models. Moreover, the model training time is also compared to prove its effectiveness in the paper, and an ablation study is conducted to validate the effectiveness of each module.</description><subject>Adaptation models</subject><subject>Algorithms</subject><subject>Biomedical imaging</subject><subject>Computational Biology - methods</subject><subject>Computational modeling</subject><subject>Convex functions</subject><subject>Convex optimization</subject><subject>Data models</subject><subject>Databases, Factual</subject><subject>few-shot</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Machine Learning</subject><subject>medical image classification</subject><subject>meta learning</subject><subject>Support Vector Machine</subject><subject>Task analysis</subject><subject>Training</subject><issn>1545-5963</issn><issn>1557-9964</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpNkE1Lw0AURQdRtFZ_gCCSpZvU-cxM3NliVWh1oa7Dm8wbjSZNnUkp_ntTWsXVuzzOvYtDyBmjI8ZofvUyGY9HnHIxEtxII7M9MmBK6TTPM7m_yVKlKs_EETmO8YNSLnMqD8mR0IJqZtiAzObonpbdI3bXyRw7SGcIYVEt3pJpgAbXbfhMfBuSKa7T5_e26yFXlVAnDw28YTKpIcbK95-uahcn5MBDHfF0d4fkdXr7MrlPZ093D5ObWVpyLbvU6dLaHFE6BMOtdRxZKYwSwqLLQGmLGjx4ZjQoI8FZB-gt1d5bxSATQ3K53V2G9muFsSuaKpZY17DAdhULbrhSlAnBepRt0TK0MQb0xTJUDYTvgtFiI7HYSCw2EoudxL5zsZtf2QbdX-PXWg-cb4EKEf8NMmkylosfx0h3HQ</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Lu, Liangfu</creator><creator>Cui, Xudong</creator><creator>Tan, Zhiyuan</creator><creator>Wu, Yulei</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5420-2554</orcidid><orcidid>https://orcid.org/0000-0001-8731-9775</orcidid><orcidid>https://orcid.org/0000-0002-6267-2633</orcidid><orcidid>https://orcid.org/0000-0003-0801-8443</orcidid></search><sort><creationdate>20240701</creationdate><title>MedOptNet: Meta-Learning Framework for Few-Shot Medical Image Classification</title><author>Lu, Liangfu ; Cui, Xudong ; Tan, Zhiyuan ; Wu, Yulei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-d7cbb9ee4dea82bbd2e1c38533bed6a57be7afaf187a584adbdaefb07ffb51a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Algorithms</topic><topic>Biomedical imaging</topic><topic>Computational Biology - methods</topic><topic>Computational modeling</topic><topic>Convex functions</topic><topic>Convex optimization</topic><topic>Data models</topic><topic>Databases, Factual</topic><topic>few-shot</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Machine Learning</topic><topic>medical image classification</topic><topic>meta learning</topic><topic>Support Vector Machine</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Liangfu</creatorcontrib><creatorcontrib>Cui, Xudong</creatorcontrib><creatorcontrib>Tan, Zhiyuan</creatorcontrib><creatorcontrib>Wu, Yulei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lu, Liangfu</au><au>Cui, Xudong</au><au>Tan, Zhiyuan</au><au>Wu, Yulei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MedOptNet: Meta-Learning Framework for Few-Shot Medical Image Classification</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>21</volume><issue>4</issue><spage>725</spage><epage>736</epage><pages>725-736</pages><issn>1545-5963</issn><issn>1557-9964</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>In the medical research domain, limited data and high annotation costs have made efficient classification under few-shot conditions a popular research area. This paper proposes a meta-learning framework, termed MedOptNet, for few-shot medical image classification. The framework enables the use of various high-performance convex optimization models as classifiers, such as multi-class kernel support vector machines, ridge regression, and other models. End-to-end training is then implemented using dual problems and differentiation in the paper. Additionally, various regularization techniques are employed to enhance the model's generalization capabilities. Experiments on the BreakHis, ISIC2018, and Pap smear medical few-shot datasets demonstrate that the MedOptNet framework outperforms benchmark models. Moreover, the model training time is also compared to prove its effectiveness in the paper, and an ablation study is conducted to validate the effectiveness of each module.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37307181</pmid><doi>10.1109/TCBB.2023.3284846</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5420-2554</orcidid><orcidid>https://orcid.org/0000-0001-8731-9775</orcidid><orcidid>https://orcid.org/0000-0002-6267-2633</orcidid><orcidid>https://orcid.org/0000-0003-0801-8443</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-5963 |
ispartof | IEEE/ACM transactions on computational biology and bioinformatics, 2024-07, Vol.21 (4), p.725-736 |
issn | 1545-5963 1557-9964 1557-9964 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCBB_2023_3284846 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Algorithms Biomedical imaging Computational Biology - methods Computational modeling Convex functions Convex optimization Data models Databases, Factual few-shot Humans Image Interpretation, Computer-Assisted - methods Machine Learning medical image classification meta learning Support Vector Machine Task analysis Training |
title | MedOptNet: Meta-Learning Framework for Few-Shot Medical Image Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A05%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MedOptNet:%20Meta-Learning%20Framework%20for%20Few-Shot%20Medical%20Image%20Classification&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Lu,%20Liangfu&rft.date=2024-07-01&rft.volume=21&rft.issue=4&rft.spage=725&rft.epage=736&rft.pages=725-736&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2023.3284846&rft_dat=%3Cproquest_RIE%3E2825501331%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825501331&rft_id=info:pmid/37307181&rft_ieee_id=10148619&rfr_iscdi=true |