MedOptNet: Meta-Learning Framework for Few-Shot Medical Image Classification

In the medical research domain, limited data and high annotation costs have made efficient classification under few-shot conditions a popular research area. This paper proposes a meta-learning framework, termed MedOptNet, for few-shot medical image classification. The framework enables the use of va...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on computational biology and bioinformatics 2024-07, Vol.21 (4), p.725-736
Hauptverfasser: Lu, Liangfu, Cui, Xudong, Tan, Zhiyuan, Wu, Yulei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 736
container_issue 4
container_start_page 725
container_title IEEE/ACM transactions on computational biology and bioinformatics
container_volume 21
creator Lu, Liangfu
Cui, Xudong
Tan, Zhiyuan
Wu, Yulei
description In the medical research domain, limited data and high annotation costs have made efficient classification under few-shot conditions a popular research area. This paper proposes a meta-learning framework, termed MedOptNet, for few-shot medical image classification. The framework enables the use of various high-performance convex optimization models as classifiers, such as multi-class kernel support vector machines, ridge regression, and other models. End-to-end training is then implemented using dual problems and differentiation in the paper. Additionally, various regularization techniques are employed to enhance the model's generalization capabilities. Experiments on the BreakHis, ISIC2018, and Pap smear medical few-shot datasets demonstrate that the MedOptNet framework outperforms benchmark models. Moreover, the model training time is also compared to prove its effectiveness in the paper, and an ablation study is conducted to validate the effectiveness of each module.
doi_str_mv 10.1109/TCBB.2023.3284846
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCBB_2023_3284846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10148619</ieee_id><sourcerecordid>2825501331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-d7cbb9ee4dea82bbd2e1c38533bed6a57be7afaf187a584adbdaefb07ffb51a63</originalsourceid><addsrcrecordid>eNpNkE1Lw0AURQdRtFZ_gCCSpZvU-cxM3NliVWh1oa7Dm8wbjSZNnUkp_ntTWsXVuzzOvYtDyBmjI8ZofvUyGY9HnHIxEtxII7M9MmBK6TTPM7m_yVKlKs_EETmO8YNSLnMqD8mR0IJqZtiAzObonpbdI3bXyRw7SGcIYVEt3pJpgAbXbfhMfBuSKa7T5_e26yFXlVAnDw28YTKpIcbK95-uahcn5MBDHfF0d4fkdXr7MrlPZ093D5ObWVpyLbvU6dLaHFE6BMOtdRxZKYwSwqLLQGmLGjx4ZjQoI8FZB-gt1d5bxSATQ3K53V2G9muFsSuaKpZY17DAdhULbrhSlAnBepRt0TK0MQb0xTJUDYTvgtFiI7HYSCw2EoudxL5zsZtf2QbdX-PXWg-cb4EKEf8NMmkylosfx0h3HQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825501331</pqid></control><display><type>article</type><title>MedOptNet: Meta-Learning Framework for Few-Shot Medical Image Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Lu, Liangfu ; Cui, Xudong ; Tan, Zhiyuan ; Wu, Yulei</creator><creatorcontrib>Lu, Liangfu ; Cui, Xudong ; Tan, Zhiyuan ; Wu, Yulei</creatorcontrib><description>In the medical research domain, limited data and high annotation costs have made efficient classification under few-shot conditions a popular research area. This paper proposes a meta-learning framework, termed MedOptNet, for few-shot medical image classification. The framework enables the use of various high-performance convex optimization models as classifiers, such as multi-class kernel support vector machines, ridge regression, and other models. End-to-end training is then implemented using dual problems and differentiation in the paper. Additionally, various regularization techniques are employed to enhance the model's generalization capabilities. Experiments on the BreakHis, ISIC2018, and Pap smear medical few-shot datasets demonstrate that the MedOptNet framework outperforms benchmark models. Moreover, the model training time is also compared to prove its effectiveness in the paper, and an ablation study is conducted to validate the effectiveness of each module.</description><identifier>ISSN: 1545-5963</identifier><identifier>ISSN: 1557-9964</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2023.3284846</identifier><identifier>PMID: 37307181</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptation models ; Algorithms ; Biomedical imaging ; Computational Biology - methods ; Computational modeling ; Convex functions ; Convex optimization ; Data models ; Databases, Factual ; few-shot ; Humans ; Image Interpretation, Computer-Assisted - methods ; Machine Learning ; medical image classification ; meta learning ; Support Vector Machine ; Task analysis ; Training</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2024-07, Vol.21 (4), p.725-736</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c274t-d7cbb9ee4dea82bbd2e1c38533bed6a57be7afaf187a584adbdaefb07ffb51a63</cites><orcidid>0000-0001-5420-2554 ; 0000-0001-8731-9775 ; 0000-0002-6267-2633 ; 0000-0003-0801-8443</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10148619$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10148619$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37307181$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Liangfu</creatorcontrib><creatorcontrib>Cui, Xudong</creatorcontrib><creatorcontrib>Tan, Zhiyuan</creatorcontrib><creatorcontrib>Wu, Yulei</creatorcontrib><title>MedOptNet: Meta-Learning Framework for Few-Shot Medical Image Classification</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>In the medical research domain, limited data and high annotation costs have made efficient classification under few-shot conditions a popular research area. This paper proposes a meta-learning framework, termed MedOptNet, for few-shot medical image classification. The framework enables the use of various high-performance convex optimization models as classifiers, such as multi-class kernel support vector machines, ridge regression, and other models. End-to-end training is then implemented using dual problems and differentiation in the paper. Additionally, various regularization techniques are employed to enhance the model's generalization capabilities. Experiments on the BreakHis, ISIC2018, and Pap smear medical few-shot datasets demonstrate that the MedOptNet framework outperforms benchmark models. Moreover, the model training time is also compared to prove its effectiveness in the paper, and an ablation study is conducted to validate the effectiveness of each module.</description><subject>Adaptation models</subject><subject>Algorithms</subject><subject>Biomedical imaging</subject><subject>Computational Biology - methods</subject><subject>Computational modeling</subject><subject>Convex functions</subject><subject>Convex optimization</subject><subject>Data models</subject><subject>Databases, Factual</subject><subject>few-shot</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Machine Learning</subject><subject>medical image classification</subject><subject>meta learning</subject><subject>Support Vector Machine</subject><subject>Task analysis</subject><subject>Training</subject><issn>1545-5963</issn><issn>1557-9964</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpNkE1Lw0AURQdRtFZ_gCCSpZvU-cxM3NliVWh1oa7Dm8wbjSZNnUkp_ntTWsXVuzzOvYtDyBmjI8ZofvUyGY9HnHIxEtxII7M9MmBK6TTPM7m_yVKlKs_EETmO8YNSLnMqD8mR0IJqZtiAzObonpbdI3bXyRw7SGcIYVEt3pJpgAbXbfhMfBuSKa7T5_e26yFXlVAnDw28YTKpIcbK95-uahcn5MBDHfF0d4fkdXr7MrlPZ093D5ObWVpyLbvU6dLaHFE6BMOtdRxZKYwSwqLLQGmLGjx4ZjQoI8FZB-gt1d5bxSATQ3K53V2G9muFsSuaKpZY17DAdhULbrhSlAnBepRt0TK0MQb0xTJUDYTvgtFiI7HYSCw2EoudxL5zsZtf2QbdX-PXWg-cb4EKEf8NMmkylosfx0h3HQ</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Lu, Liangfu</creator><creator>Cui, Xudong</creator><creator>Tan, Zhiyuan</creator><creator>Wu, Yulei</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5420-2554</orcidid><orcidid>https://orcid.org/0000-0001-8731-9775</orcidid><orcidid>https://orcid.org/0000-0002-6267-2633</orcidid><orcidid>https://orcid.org/0000-0003-0801-8443</orcidid></search><sort><creationdate>20240701</creationdate><title>MedOptNet: Meta-Learning Framework for Few-Shot Medical Image Classification</title><author>Lu, Liangfu ; Cui, Xudong ; Tan, Zhiyuan ; Wu, Yulei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-d7cbb9ee4dea82bbd2e1c38533bed6a57be7afaf187a584adbdaefb07ffb51a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Algorithms</topic><topic>Biomedical imaging</topic><topic>Computational Biology - methods</topic><topic>Computational modeling</topic><topic>Convex functions</topic><topic>Convex optimization</topic><topic>Data models</topic><topic>Databases, Factual</topic><topic>few-shot</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Machine Learning</topic><topic>medical image classification</topic><topic>meta learning</topic><topic>Support Vector Machine</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Liangfu</creatorcontrib><creatorcontrib>Cui, Xudong</creatorcontrib><creatorcontrib>Tan, Zhiyuan</creatorcontrib><creatorcontrib>Wu, Yulei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lu, Liangfu</au><au>Cui, Xudong</au><au>Tan, Zhiyuan</au><au>Wu, Yulei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MedOptNet: Meta-Learning Framework for Few-Shot Medical Image Classification</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>21</volume><issue>4</issue><spage>725</spage><epage>736</epage><pages>725-736</pages><issn>1545-5963</issn><issn>1557-9964</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>In the medical research domain, limited data and high annotation costs have made efficient classification under few-shot conditions a popular research area. This paper proposes a meta-learning framework, termed MedOptNet, for few-shot medical image classification. The framework enables the use of various high-performance convex optimization models as classifiers, such as multi-class kernel support vector machines, ridge regression, and other models. End-to-end training is then implemented using dual problems and differentiation in the paper. Additionally, various regularization techniques are employed to enhance the model's generalization capabilities. Experiments on the BreakHis, ISIC2018, and Pap smear medical few-shot datasets demonstrate that the MedOptNet framework outperforms benchmark models. Moreover, the model training time is also compared to prove its effectiveness in the paper, and an ablation study is conducted to validate the effectiveness of each module.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37307181</pmid><doi>10.1109/TCBB.2023.3284846</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5420-2554</orcidid><orcidid>https://orcid.org/0000-0001-8731-9775</orcidid><orcidid>https://orcid.org/0000-0002-6267-2633</orcidid><orcidid>https://orcid.org/0000-0003-0801-8443</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-5963
ispartof IEEE/ACM transactions on computational biology and bioinformatics, 2024-07, Vol.21 (4), p.725-736
issn 1545-5963
1557-9964
1557-9964
language eng
recordid cdi_crossref_primary_10_1109_TCBB_2023_3284846
source IEEE Electronic Library (IEL)
subjects Adaptation models
Algorithms
Biomedical imaging
Computational Biology - methods
Computational modeling
Convex functions
Convex optimization
Data models
Databases, Factual
few-shot
Humans
Image Interpretation, Computer-Assisted - methods
Machine Learning
medical image classification
meta learning
Support Vector Machine
Task analysis
Training
title MedOptNet: Meta-Learning Framework for Few-Shot Medical Image Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A05%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MedOptNet:%20Meta-Learning%20Framework%20for%20Few-Shot%20Medical%20Image%20Classification&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Lu,%20Liangfu&rft.date=2024-07-01&rft.volume=21&rft.issue=4&rft.spage=725&rft.epage=736&rft.pages=725-736&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2023.3284846&rft_dat=%3Cproquest_RIE%3E2825501331%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825501331&rft_id=info:pmid/37307181&rft_ieee_id=10148619&rfr_iscdi=true