Improving Inter-Helix Contact Prediction With Local 2D Topological Information

Inter-helix contact prediction is to identify residue contact across different helices in \alpha α -helical integral membrane proteins. Despite the progress made by various computational methods, contact prediction remains as a challenging task, and there is no method to our knowledge that directly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on computational biology and bioinformatics 2023-09, Vol.20 (5), p.3001-3012
Hauptverfasser: Li, Jiefu, Sawhney, Aman, Lee, Jung-Youn, Liao, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3012
container_issue 5
container_start_page 3001
container_title IEEE/ACM transactions on computational biology and bioinformatics
container_volume 20
creator Li, Jiefu
Sawhney, Aman
Lee, Jung-Youn
Liao, Li
description Inter-helix contact prediction is to identify residue contact across different helices in \alpha α -helical integral membrane proteins. Despite the progress made by various computational methods, contact prediction remains as a challenging task, and there is no method to our knowledge that directly tap into the contact map in an alignment free manner. We build 2D contact models from an independent dataset to capture the topological patterns in the neighborhood of a residue pair depending it is a contact or not, and apply the models to the state-of-art method's predictions to extract the features reflecting 2D inter-helix contact patterns. A secondary classifier is trained on such features. Realizing that the achievable improvement is intrinsically hinged on the quality of original predictions, we devise a mechanism to deal with the issue by introducing, 1) partial discretization of original prediction scores to more effectively leverage useful information 2) fuzzy score to assess the quality of the original prediction to help with selecting the residue pairs where improvement is more achievable. The cross-validation results show that the prediction from our method outperforms other methods including the state-of-the-art method (DeepHelicon) by a notable degree even without using the refinement selection scheme. By applying the refinement selection scheme, our method outperforms the state-of-the-art method significantly in these selected sequences.
doi_str_mv 10.1109/TCBB.2023.3274361
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCBB_2023_3274361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10121660</ieee_id><sourcerecordid>2811570049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-460a63462429549d00de8becc3fd54bd098c2db20de6e37662ace2e8f7c754bb3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRrFZ_gCAS8OIldb-TPdr40UJRDxWPIdlM6pYkWzeJ6L93Q6uIp52deeZleBA6I3hCCFbXy2Q6nVBM2YTRiDNJ9tARESIKlZJ8f6i5CIWSbISO23aNMeUK80M0YpHHOOZH6HFeb5z9MM0qmDcduHAGlfkMEtt0me6CZweF0Z2xTfBqurdgYXVWBfQ2WNqNrezKDN95U1pXZwN1gg7KrGrhdPeO0cv93TKZhYunh3lyswg1w7QLucSZZFxSTpXgqsC4gDgHrVlZCJ4XWMWaFjn1bQkskpJmGijEZaQjP8_ZGF1tc_3x7z20XVqbVkNVZQ3Yvk1pTIiIMObKo5f_0LXtXeOv81QkRMw85imypbSzbeugTDfO1Jn7SglOB9npIDsdZKc72X7nYpfc5zUUvxs_dj1wvgUMAPwJJJRIidk3efOB2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2875583004</pqid></control><display><type>article</type><title>Improving Inter-Helix Contact Prediction With Local 2D Topological Information</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Jiefu ; Sawhney, Aman ; Lee, Jung-Youn ; Liao, Li</creator><creatorcontrib>Li, Jiefu ; Sawhney, Aman ; Lee, Jung-Youn ; Liao, Li</creatorcontrib><description><![CDATA[Inter-helix contact prediction is to identify residue contact across different helices in <inline-formula><tex-math notation="LaTeX">\alpha</tex-math> <mml:math><mml:mi>α</mml:mi></mml:math><inline-graphic xlink:href="liao-ieq1-3274361.gif"/> </inline-formula>-helical integral membrane proteins. Despite the progress made by various computational methods, contact prediction remains as a challenging task, and there is no method to our knowledge that directly tap into the contact map in an alignment free manner. We build 2D contact models from an independent dataset to capture the topological patterns in the neighborhood of a residue pair depending it is a contact or not, and apply the models to the state-of-art method's predictions to extract the features reflecting 2D inter-helix contact patterns. A secondary classifier is trained on such features. Realizing that the achievable improvement is intrinsically hinged on the quality of original predictions, we devise a mechanism to deal with the issue by introducing, 1) partial discretization of original prediction scores to more effectively leverage useful information 2) fuzzy score to assess the quality of the original prediction to help with selecting the residue pairs where improvement is more achievable. The cross-validation results show that the prediction from our method outperforms other methods including the state-of-the-art method (DeepHelicon) by a notable degree even without using the refinement selection scheme. By applying the refinement selection scheme, our method outperforms the state-of-the-art method significantly in these selected sequences.]]></description><identifier>ISSN: 1545-5963</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2023.3274361</identifier><identifier>PMID: 37155404</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>2D contact model ; Biomembranes ; Computational modeling ; Deep learning ; Feature extraction ; fuzzy score ; Helices ; hybrid-cutoffs ; Inter-helix contact prediction ; Membrane proteins ; Predictions ; Predictive models ; Proteins ; Quality assessment ; refinement selection ; Residues ; Topology ; Training ; Two dimensional models</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2023-09, Vol.20 (5), p.3001-3012</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c302t-460a63462429549d00de8becc3fd54bd098c2db20de6e37662ace2e8f7c754bb3</cites><orcidid>0000-0001-5285-4671 ; 0000-0003-4604-7974 ; 0000-0002-4803-8142 ; 0000-0002-1197-1879</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10121660$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10121660$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37155404$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jiefu</creatorcontrib><creatorcontrib>Sawhney, Aman</creatorcontrib><creatorcontrib>Lee, Jung-Youn</creatorcontrib><creatorcontrib>Liao, Li</creatorcontrib><title>Improving Inter-Helix Contact Prediction With Local 2D Topological Information</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description><![CDATA[Inter-helix contact prediction is to identify residue contact across different helices in <inline-formula><tex-math notation="LaTeX">\alpha</tex-math> <mml:math><mml:mi>α</mml:mi></mml:math><inline-graphic xlink:href="liao-ieq1-3274361.gif"/> </inline-formula>-helical integral membrane proteins. Despite the progress made by various computational methods, contact prediction remains as a challenging task, and there is no method to our knowledge that directly tap into the contact map in an alignment free manner. We build 2D contact models from an independent dataset to capture the topological patterns in the neighborhood of a residue pair depending it is a contact or not, and apply the models to the state-of-art method's predictions to extract the features reflecting 2D inter-helix contact patterns. A secondary classifier is trained on such features. Realizing that the achievable improvement is intrinsically hinged on the quality of original predictions, we devise a mechanism to deal with the issue by introducing, 1) partial discretization of original prediction scores to more effectively leverage useful information 2) fuzzy score to assess the quality of the original prediction to help with selecting the residue pairs where improvement is more achievable. The cross-validation results show that the prediction from our method outperforms other methods including the state-of-the-art method (DeepHelicon) by a notable degree even without using the refinement selection scheme. By applying the refinement selection scheme, our method outperforms the state-of-the-art method significantly in these selected sequences.]]></description><subject>2D contact model</subject><subject>Biomembranes</subject><subject>Computational modeling</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>fuzzy score</subject><subject>Helices</subject><subject>hybrid-cutoffs</subject><subject>Inter-helix contact prediction</subject><subject>Membrane proteins</subject><subject>Predictions</subject><subject>Predictive models</subject><subject>Proteins</subject><subject>Quality assessment</subject><subject>refinement selection</subject><subject>Residues</subject><subject>Topology</subject><subject>Training</subject><subject>Two dimensional models</subject><issn>1545-5963</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRrFZ_gCAS8OIldb-TPdr40UJRDxWPIdlM6pYkWzeJ6L93Q6uIp52deeZleBA6I3hCCFbXy2Q6nVBM2YTRiDNJ9tARESIKlZJ8f6i5CIWSbISO23aNMeUK80M0YpHHOOZH6HFeb5z9MM0qmDcduHAGlfkMEtt0me6CZweF0Z2xTfBqurdgYXVWBfQ2WNqNrezKDN95U1pXZwN1gg7KrGrhdPeO0cv93TKZhYunh3lyswg1w7QLucSZZFxSTpXgqsC4gDgHrVlZCJ4XWMWaFjn1bQkskpJmGijEZaQjP8_ZGF1tc_3x7z20XVqbVkNVZQ3Yvk1pTIiIMObKo5f_0LXtXeOv81QkRMw85imypbSzbeugTDfO1Jn7SglOB9npIDsdZKc72X7nYpfc5zUUvxs_dj1wvgUMAPwJJJRIidk3efOB2Q</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Li, Jiefu</creator><creator>Sawhney, Aman</creator><creator>Lee, Jung-Youn</creator><creator>Liao, Li</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5285-4671</orcidid><orcidid>https://orcid.org/0000-0003-4604-7974</orcidid><orcidid>https://orcid.org/0000-0002-4803-8142</orcidid><orcidid>https://orcid.org/0000-0002-1197-1879</orcidid></search><sort><creationdate>20230901</creationdate><title>Improving Inter-Helix Contact Prediction With Local 2D Topological Information</title><author>Li, Jiefu ; Sawhney, Aman ; Lee, Jung-Youn ; Liao, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-460a63462429549d00de8becc3fd54bd098c2db20de6e37662ace2e8f7c754bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>2D contact model</topic><topic>Biomembranes</topic><topic>Computational modeling</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>fuzzy score</topic><topic>Helices</topic><topic>hybrid-cutoffs</topic><topic>Inter-helix contact prediction</topic><topic>Membrane proteins</topic><topic>Predictions</topic><topic>Predictive models</topic><topic>Proteins</topic><topic>Quality assessment</topic><topic>refinement selection</topic><topic>Residues</topic><topic>Topology</topic><topic>Training</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jiefu</creatorcontrib><creatorcontrib>Sawhney, Aman</creatorcontrib><creatorcontrib>Lee, Jung-Youn</creatorcontrib><creatorcontrib>Liao, Li</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Jiefu</au><au>Sawhney, Aman</au><au>Lee, Jung-Youn</au><au>Liao, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Inter-Helix Contact Prediction With Local 2D Topological Information</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>20</volume><issue>5</issue><spage>3001</spage><epage>3012</epage><pages>3001-3012</pages><issn>1545-5963</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract><![CDATA[Inter-helix contact prediction is to identify residue contact across different helices in <inline-formula><tex-math notation="LaTeX">\alpha</tex-math> <mml:math><mml:mi>α</mml:mi></mml:math><inline-graphic xlink:href="liao-ieq1-3274361.gif"/> </inline-formula>-helical integral membrane proteins. Despite the progress made by various computational methods, contact prediction remains as a challenging task, and there is no method to our knowledge that directly tap into the contact map in an alignment free manner. We build 2D contact models from an independent dataset to capture the topological patterns in the neighborhood of a residue pair depending it is a contact or not, and apply the models to the state-of-art method's predictions to extract the features reflecting 2D inter-helix contact patterns. A secondary classifier is trained on such features. Realizing that the achievable improvement is intrinsically hinged on the quality of original predictions, we devise a mechanism to deal with the issue by introducing, 1) partial discretization of original prediction scores to more effectively leverage useful information 2) fuzzy score to assess the quality of the original prediction to help with selecting the residue pairs where improvement is more achievable. The cross-validation results show that the prediction from our method outperforms other methods including the state-of-the-art method (DeepHelicon) by a notable degree even without using the refinement selection scheme. By applying the refinement selection scheme, our method outperforms the state-of-the-art method significantly in these selected sequences.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>37155404</pmid><doi>10.1109/TCBB.2023.3274361</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5285-4671</orcidid><orcidid>https://orcid.org/0000-0003-4604-7974</orcidid><orcidid>https://orcid.org/0000-0002-4803-8142</orcidid><orcidid>https://orcid.org/0000-0002-1197-1879</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-5963
ispartof IEEE/ACM transactions on computational biology and bioinformatics, 2023-09, Vol.20 (5), p.3001-3012
issn 1545-5963
1557-9964
language eng
recordid cdi_crossref_primary_10_1109_TCBB_2023_3274361
source IEEE Electronic Library (IEL)
subjects 2D contact model
Biomembranes
Computational modeling
Deep learning
Feature extraction
fuzzy score
Helices
hybrid-cutoffs
Inter-helix contact prediction
Membrane proteins
Predictions
Predictive models
Proteins
Quality assessment
refinement selection
Residues
Topology
Training
Two dimensional models
title Improving Inter-Helix Contact Prediction With Local 2D Topological Information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T11%3A15%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Inter-Helix%20Contact%20Prediction%20With%20Local%202D%20Topological%20Information&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Li,%20Jiefu&rft.date=2023-09-01&rft.volume=20&rft.issue=5&rft.spage=3001&rft.epage=3012&rft.pages=3001-3012&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2023.3274361&rft_dat=%3Cproquest_RIE%3E2811570049%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2875583004&rft_id=info:pmid/37155404&rft_ieee_id=10121660&rfr_iscdi=true