Improving Inter-Helix Contact Prediction With Local 2D Topological Information
Inter-helix contact prediction is to identify residue contact across different helices in \alpha α -helical integral membrane proteins. Despite the progress made by various computational methods, contact prediction remains as a challenging task, and there is no method to our knowledge that directly...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on computational biology and bioinformatics 2023-09, Vol.20 (5), p.3001-3012 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3012 |
---|---|
container_issue | 5 |
container_start_page | 3001 |
container_title | IEEE/ACM transactions on computational biology and bioinformatics |
container_volume | 20 |
creator | Li, Jiefu Sawhney, Aman Lee, Jung-Youn Liao, Li |
description | Inter-helix contact prediction is to identify residue contact across different helices in \alpha α -helical integral membrane proteins. Despite the progress made by various computational methods, contact prediction remains as a challenging task, and there is no method to our knowledge that directly tap into the contact map in an alignment free manner. We build 2D contact models from an independent dataset to capture the topological patterns in the neighborhood of a residue pair depending it is a contact or not, and apply the models to the state-of-art method's predictions to extract the features reflecting 2D inter-helix contact patterns. A secondary classifier is trained on such features. Realizing that the achievable improvement is intrinsically hinged on the quality of original predictions, we devise a mechanism to deal with the issue by introducing, 1) partial discretization of original prediction scores to more effectively leverage useful information 2) fuzzy score to assess the quality of the original prediction to help with selecting the residue pairs where improvement is more achievable. The cross-validation results show that the prediction from our method outperforms other methods including the state-of-the-art method (DeepHelicon) by a notable degree even without using the refinement selection scheme. By applying the refinement selection scheme, our method outperforms the state-of-the-art method significantly in these selected sequences. |
doi_str_mv | 10.1109/TCBB.2023.3274361 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCBB_2023_3274361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10121660</ieee_id><sourcerecordid>2811570049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-460a63462429549d00de8becc3fd54bd098c2db20de6e37662ace2e8f7c754bb3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRrFZ_gCAS8OIldb-TPdr40UJRDxWPIdlM6pYkWzeJ6L93Q6uIp52deeZleBA6I3hCCFbXy2Q6nVBM2YTRiDNJ9tARESIKlZJ8f6i5CIWSbISO23aNMeUK80M0YpHHOOZH6HFeb5z9MM0qmDcduHAGlfkMEtt0me6CZweF0Z2xTfBqurdgYXVWBfQ2WNqNrezKDN95U1pXZwN1gg7KrGrhdPeO0cv93TKZhYunh3lyswg1w7QLucSZZFxSTpXgqsC4gDgHrVlZCJ4XWMWaFjn1bQkskpJmGijEZaQjP8_ZGF1tc_3x7z20XVqbVkNVZQ3Yvk1pTIiIMObKo5f_0LXtXeOv81QkRMw85imypbSzbeugTDfO1Jn7SglOB9npIDsdZKc72X7nYpfc5zUUvxs_dj1wvgUMAPwJJJRIidk3efOB2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2875583004</pqid></control><display><type>article</type><title>Improving Inter-Helix Contact Prediction With Local 2D Topological Information</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Jiefu ; Sawhney, Aman ; Lee, Jung-Youn ; Liao, Li</creator><creatorcontrib>Li, Jiefu ; Sawhney, Aman ; Lee, Jung-Youn ; Liao, Li</creatorcontrib><description><![CDATA[Inter-helix contact prediction is to identify residue contact across different helices in <inline-formula><tex-math notation="LaTeX">\alpha</tex-math> <mml:math><mml:mi>α</mml:mi></mml:math><inline-graphic xlink:href="liao-ieq1-3274361.gif"/> </inline-formula>-helical integral membrane proteins. Despite the progress made by various computational methods, contact prediction remains as a challenging task, and there is no method to our knowledge that directly tap into the contact map in an alignment free manner. We build 2D contact models from an independent dataset to capture the topological patterns in the neighborhood of a residue pair depending it is a contact or not, and apply the models to the state-of-art method's predictions to extract the features reflecting 2D inter-helix contact patterns. A secondary classifier is trained on such features. Realizing that the achievable improvement is intrinsically hinged on the quality of original predictions, we devise a mechanism to deal with the issue by introducing, 1) partial discretization of original prediction scores to more effectively leverage useful information 2) fuzzy score to assess the quality of the original prediction to help with selecting the residue pairs where improvement is more achievable. The cross-validation results show that the prediction from our method outperforms other methods including the state-of-the-art method (DeepHelicon) by a notable degree even without using the refinement selection scheme. By applying the refinement selection scheme, our method outperforms the state-of-the-art method significantly in these selected sequences.]]></description><identifier>ISSN: 1545-5963</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2023.3274361</identifier><identifier>PMID: 37155404</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>2D contact model ; Biomembranes ; Computational modeling ; Deep learning ; Feature extraction ; fuzzy score ; Helices ; hybrid-cutoffs ; Inter-helix contact prediction ; Membrane proteins ; Predictions ; Predictive models ; Proteins ; Quality assessment ; refinement selection ; Residues ; Topology ; Training ; Two dimensional models</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2023-09, Vol.20 (5), p.3001-3012</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c302t-460a63462429549d00de8becc3fd54bd098c2db20de6e37662ace2e8f7c754bb3</cites><orcidid>0000-0001-5285-4671 ; 0000-0003-4604-7974 ; 0000-0002-4803-8142 ; 0000-0002-1197-1879</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10121660$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10121660$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37155404$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jiefu</creatorcontrib><creatorcontrib>Sawhney, Aman</creatorcontrib><creatorcontrib>Lee, Jung-Youn</creatorcontrib><creatorcontrib>Liao, Li</creatorcontrib><title>Improving Inter-Helix Contact Prediction With Local 2D Topological Information</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description><![CDATA[Inter-helix contact prediction is to identify residue contact across different helices in <inline-formula><tex-math notation="LaTeX">\alpha</tex-math> <mml:math><mml:mi>α</mml:mi></mml:math><inline-graphic xlink:href="liao-ieq1-3274361.gif"/> </inline-formula>-helical integral membrane proteins. Despite the progress made by various computational methods, contact prediction remains as a challenging task, and there is no method to our knowledge that directly tap into the contact map in an alignment free manner. We build 2D contact models from an independent dataset to capture the topological patterns in the neighborhood of a residue pair depending it is a contact or not, and apply the models to the state-of-art method's predictions to extract the features reflecting 2D inter-helix contact patterns. A secondary classifier is trained on such features. Realizing that the achievable improvement is intrinsically hinged on the quality of original predictions, we devise a mechanism to deal with the issue by introducing, 1) partial discretization of original prediction scores to more effectively leverage useful information 2) fuzzy score to assess the quality of the original prediction to help with selecting the residue pairs where improvement is more achievable. The cross-validation results show that the prediction from our method outperforms other methods including the state-of-the-art method (DeepHelicon) by a notable degree even without using the refinement selection scheme. By applying the refinement selection scheme, our method outperforms the state-of-the-art method significantly in these selected sequences.]]></description><subject>2D contact model</subject><subject>Biomembranes</subject><subject>Computational modeling</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>fuzzy score</subject><subject>Helices</subject><subject>hybrid-cutoffs</subject><subject>Inter-helix contact prediction</subject><subject>Membrane proteins</subject><subject>Predictions</subject><subject>Predictive models</subject><subject>Proteins</subject><subject>Quality assessment</subject><subject>refinement selection</subject><subject>Residues</subject><subject>Topology</subject><subject>Training</subject><subject>Two dimensional models</subject><issn>1545-5963</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRrFZ_gCAS8OIldb-TPdr40UJRDxWPIdlM6pYkWzeJ6L93Q6uIp52deeZleBA6I3hCCFbXy2Q6nVBM2YTRiDNJ9tARESIKlZJ8f6i5CIWSbISO23aNMeUK80M0YpHHOOZH6HFeb5z9MM0qmDcduHAGlfkMEtt0me6CZweF0Z2xTfBqurdgYXVWBfQ2WNqNrezKDN95U1pXZwN1gg7KrGrhdPeO0cv93TKZhYunh3lyswg1w7QLucSZZFxSTpXgqsC4gDgHrVlZCJ4XWMWaFjn1bQkskpJmGijEZaQjP8_ZGF1tc_3x7z20XVqbVkNVZQ3Yvk1pTIiIMObKo5f_0LXtXeOv81QkRMw85imypbSzbeugTDfO1Jn7SglOB9npIDsdZKc72X7nYpfc5zUUvxs_dj1wvgUMAPwJJJRIidk3efOB2Q</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Li, Jiefu</creator><creator>Sawhney, Aman</creator><creator>Lee, Jung-Youn</creator><creator>Liao, Li</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5285-4671</orcidid><orcidid>https://orcid.org/0000-0003-4604-7974</orcidid><orcidid>https://orcid.org/0000-0002-4803-8142</orcidid><orcidid>https://orcid.org/0000-0002-1197-1879</orcidid></search><sort><creationdate>20230901</creationdate><title>Improving Inter-Helix Contact Prediction With Local 2D Topological Information</title><author>Li, Jiefu ; Sawhney, Aman ; Lee, Jung-Youn ; Liao, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-460a63462429549d00de8becc3fd54bd098c2db20de6e37662ace2e8f7c754bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>2D contact model</topic><topic>Biomembranes</topic><topic>Computational modeling</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>fuzzy score</topic><topic>Helices</topic><topic>hybrid-cutoffs</topic><topic>Inter-helix contact prediction</topic><topic>Membrane proteins</topic><topic>Predictions</topic><topic>Predictive models</topic><topic>Proteins</topic><topic>Quality assessment</topic><topic>refinement selection</topic><topic>Residues</topic><topic>Topology</topic><topic>Training</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jiefu</creatorcontrib><creatorcontrib>Sawhney, Aman</creatorcontrib><creatorcontrib>Lee, Jung-Youn</creatorcontrib><creatorcontrib>Liao, Li</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Jiefu</au><au>Sawhney, Aman</au><au>Lee, Jung-Youn</au><au>Liao, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Inter-Helix Contact Prediction With Local 2D Topological Information</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>20</volume><issue>5</issue><spage>3001</spage><epage>3012</epage><pages>3001-3012</pages><issn>1545-5963</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract><![CDATA[Inter-helix contact prediction is to identify residue contact across different helices in <inline-formula><tex-math notation="LaTeX">\alpha</tex-math> <mml:math><mml:mi>α</mml:mi></mml:math><inline-graphic xlink:href="liao-ieq1-3274361.gif"/> </inline-formula>-helical integral membrane proteins. Despite the progress made by various computational methods, contact prediction remains as a challenging task, and there is no method to our knowledge that directly tap into the contact map in an alignment free manner. We build 2D contact models from an independent dataset to capture the topological patterns in the neighborhood of a residue pair depending it is a contact or not, and apply the models to the state-of-art method's predictions to extract the features reflecting 2D inter-helix contact patterns. A secondary classifier is trained on such features. Realizing that the achievable improvement is intrinsically hinged on the quality of original predictions, we devise a mechanism to deal with the issue by introducing, 1) partial discretization of original prediction scores to more effectively leverage useful information 2) fuzzy score to assess the quality of the original prediction to help with selecting the residue pairs where improvement is more achievable. The cross-validation results show that the prediction from our method outperforms other methods including the state-of-the-art method (DeepHelicon) by a notable degree even without using the refinement selection scheme. By applying the refinement selection scheme, our method outperforms the state-of-the-art method significantly in these selected sequences.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>37155404</pmid><doi>10.1109/TCBB.2023.3274361</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5285-4671</orcidid><orcidid>https://orcid.org/0000-0003-4604-7974</orcidid><orcidid>https://orcid.org/0000-0002-4803-8142</orcidid><orcidid>https://orcid.org/0000-0002-1197-1879</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-5963 |
ispartof | IEEE/ACM transactions on computational biology and bioinformatics, 2023-09, Vol.20 (5), p.3001-3012 |
issn | 1545-5963 1557-9964 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCBB_2023_3274361 |
source | IEEE Electronic Library (IEL) |
subjects | 2D contact model Biomembranes Computational modeling Deep learning Feature extraction fuzzy score Helices hybrid-cutoffs Inter-helix contact prediction Membrane proteins Predictions Predictive models Proteins Quality assessment refinement selection Residues Topology Training Two dimensional models |
title | Improving Inter-Helix Contact Prediction With Local 2D Topological Information |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T11%3A15%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Inter-Helix%20Contact%20Prediction%20With%20Local%202D%20Topological%20Information&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Li,%20Jiefu&rft.date=2023-09-01&rft.volume=20&rft.issue=5&rft.spage=3001&rft.epage=3012&rft.pages=3001-3012&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2023.3274361&rft_dat=%3Cproquest_RIE%3E2811570049%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2875583004&rft_id=info:pmid/37155404&rft_ieee_id=10121660&rfr_iscdi=true |