MatchMaker: A Deep Learning Framework for Drug Synergy Prediction

Drug combination therapies have been a viable strategy for the treatment of complex diseases such as cancer due to increased efficacy and reduced side effects. However, experimentally validating all possible combinations for synergistic interaction even with high-throughout screens is intractable du...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on computational biology and bioinformatics 2022-07, Vol.19 (4), p.2334-2344
Hauptverfasser: Kuru, Halil Ibrahim, Tastan, Oznur, Cicek, A. Ercument
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2344
container_issue 4
container_start_page 2334
container_title IEEE/ACM transactions on computational biology and bioinformatics
container_volume 19
creator Kuru, Halil Ibrahim
Tastan, Oznur
Cicek, A. Ercument
description Drug combination therapies have been a viable strategy for the treatment of complex diseases such as cancer due to increased efficacy and reduced side effects. However, experimentally validating all possible combinations for synergistic interaction even with high-throughout screens is intractable due to vast combinatorial search space. Computational techniques can reduce the number of combinations to be evaluated experimentally by prioritizing promising candidates. We present MatchMaker that predicts drug synergy scores using drug chemical structure information and gene expression profiles of cell lines in a deep learning framework. For the first time, our model utilizes the largest known drug combination dataset to date, DrugComb. We compare the performance of MatchMaker with the state-of-the-art models and observe up to \sim 15\% ∼15% correlation and \sim 33\% ∼33% mean squared error (MSE) improvements over the next best method. We investigate the cell types and drug pairs that are relatively harder to predict and present novel candidate pairs. MatchMaker is built and available at https://github.com/tastanlab/matchmaker .
doi_str_mv 10.1109/TCBB.2021.3086702
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCBB_2021_3086702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9447196</ieee_id><sourcerecordid>2700414620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-2dc1568c9dae8070497d7e7bbeb802aa36201d424a35440ab0371ff8d4351bf43</originalsourceid><addsrcrecordid>eNpdkLtOw0AQRVcIRCDwAYhmJRoah9mX10uXBwGkRCAR6tXaHgfnYYe1LZS_x1YiCqo7xbkzo0PIDYMBY2AeFuPRaMCBs4GAKNTAT8gFU0oHxoTytJulCpQJRY9cVtUKgEsD8pz0hGx5pcMLMpy7OvmauzX6RzqkE8QdnaHzRV4s6dS7Lf6Ufk2z0tOJb5b0Y1-gX-7pu8c0T-q8LK7IWeY2FV4fs08-p0-L8Uswe3t-HQ9nQSJCUwc8TZgKo8SkDiPQII1ONeo4xjgC7pwIObBUcumEkhJcDEKzLItSKRSLMyn65P6wd-fL7war2m7zKsHNxhVYNpXlSuhQgGmzT-7-oauy8UX7neUaQDLZHmspdqASX1aVx8zufL51fm8Z2M6v7fzazq89-m07t4dOjoh_vJFSs1bzL92ichI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700414620</pqid></control><display><type>article</type><title>MatchMaker: A Deep Learning Framework for Drug Synergy Prediction</title><source>IEEE Electronic Library (IEL)</source><creator>Kuru, Halil Ibrahim ; Tastan, Oznur ; Cicek, A. Ercument</creator><creatorcontrib>Kuru, Halil Ibrahim ; Tastan, Oznur ; Cicek, A. Ercument</creatorcontrib><description><![CDATA[Drug combination therapies have been a viable strategy for the treatment of complex diseases such as cancer due to increased efficacy and reduced side effects. However, experimentally validating all possible combinations for synergistic interaction even with high-throughout screens is intractable due to vast combinatorial search space. Computational techniques can reduce the number of combinations to be evaluated experimentally by prioritizing promising candidates. We present MatchMaker that predicts drug synergy scores using drug chemical structure information and gene expression profiles of cell lines in a deep learning framework. For the first time, our model utilizes the largest known drug combination dataset to date, DrugComb. We compare the performance of MatchMaker with the state-of-the-art models and observe up to <inline-formula><tex-math notation="LaTeX">\sim 15\%</tex-math> <mml:math><mml:mrow><mml:mo>∼</mml:mo><mml:mn>15</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="kuru-ieq1-3086702.gif"/> </inline-formula> correlation and <inline-formula><tex-math notation="LaTeX">\sim 33\%</tex-math> <mml:math><mml:mrow><mml:mo>∼</mml:mo><mml:mn>33</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="kuru-ieq2-3086702.gif"/> </inline-formula> mean squared error (MSE) improvements over the next best method. We investigate the cell types and drug pairs that are relatively harder to predict and present novel candidate pairs. MatchMaker is built and available at https://github.com/tastanlab/matchmaker .]]></description><identifier>ISSN: 1545-5963</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2021.3086702</identifier><identifier>PMID: 34086576</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>cancer cell lines ; chemical features ; Chemicals ; Combinatorial analysis ; Computer applications ; Computer architecture ; Deep learning ; drug synergy ; Drugs ; Gene expression ; Microprocessors ; Prediction algorithms ; Predictive models ; Side effects</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2022-07, Vol.19 (4), p.2334-2344</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-2dc1568c9dae8070497d7e7bbeb802aa36201d424a35440ab0371ff8d4351bf43</citedby><cites>FETCH-LOGICAL-c369t-2dc1568c9dae8070497d7e7bbeb802aa36201d424a35440ab0371ff8d4351bf43</cites><orcidid>0000-0001-8613-6619 ; 0000-0001-7058-5372 ; 0000-0003-4356-8846</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9447196$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9447196$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kuru, Halil Ibrahim</creatorcontrib><creatorcontrib>Tastan, Oznur</creatorcontrib><creatorcontrib>Cicek, A. Ercument</creatorcontrib><title>MatchMaker: A Deep Learning Framework for Drug Synergy Prediction</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><description><![CDATA[Drug combination therapies have been a viable strategy for the treatment of complex diseases such as cancer due to increased efficacy and reduced side effects. However, experimentally validating all possible combinations for synergistic interaction even with high-throughout screens is intractable due to vast combinatorial search space. Computational techniques can reduce the number of combinations to be evaluated experimentally by prioritizing promising candidates. We present MatchMaker that predicts drug synergy scores using drug chemical structure information and gene expression profiles of cell lines in a deep learning framework. For the first time, our model utilizes the largest known drug combination dataset to date, DrugComb. We compare the performance of MatchMaker with the state-of-the-art models and observe up to <inline-formula><tex-math notation="LaTeX">\sim 15\%</tex-math> <mml:math><mml:mrow><mml:mo>∼</mml:mo><mml:mn>15</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="kuru-ieq1-3086702.gif"/> </inline-formula> correlation and <inline-formula><tex-math notation="LaTeX">\sim 33\%</tex-math> <mml:math><mml:mrow><mml:mo>∼</mml:mo><mml:mn>33</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="kuru-ieq2-3086702.gif"/> </inline-formula> mean squared error (MSE) improvements over the next best method. We investigate the cell types and drug pairs that are relatively harder to predict and present novel candidate pairs. MatchMaker is built and available at https://github.com/tastanlab/matchmaker .]]></description><subject>cancer cell lines</subject><subject>chemical features</subject><subject>Chemicals</subject><subject>Combinatorial analysis</subject><subject>Computer applications</subject><subject>Computer architecture</subject><subject>Deep learning</subject><subject>drug synergy</subject><subject>Drugs</subject><subject>Gene expression</subject><subject>Microprocessors</subject><subject>Prediction algorithms</subject><subject>Predictive models</subject><subject>Side effects</subject><issn>1545-5963</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkLtOw0AQRVcIRCDwAYhmJRoah9mX10uXBwGkRCAR6tXaHgfnYYe1LZS_x1YiCqo7xbkzo0PIDYMBY2AeFuPRaMCBs4GAKNTAT8gFU0oHxoTytJulCpQJRY9cVtUKgEsD8pz0hGx5pcMLMpy7OvmauzX6RzqkE8QdnaHzRV4s6dS7Lf6Ufk2z0tOJb5b0Y1-gX-7pu8c0T-q8LK7IWeY2FV4fs08-p0-L8Uswe3t-HQ9nQSJCUwc8TZgKo8SkDiPQII1ONeo4xjgC7pwIObBUcumEkhJcDEKzLItSKRSLMyn65P6wd-fL7war2m7zKsHNxhVYNpXlSuhQgGmzT-7-oauy8UX7neUaQDLZHmspdqASX1aVx8zufL51fm8Z2M6v7fzazq89-m07t4dOjoh_vJFSs1bzL92ichI</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Kuru, Halil Ibrahim</creator><creator>Tastan, Oznur</creator><creator>Cicek, A. Ercument</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8613-6619</orcidid><orcidid>https://orcid.org/0000-0001-7058-5372</orcidid><orcidid>https://orcid.org/0000-0003-4356-8846</orcidid></search><sort><creationdate>20220701</creationdate><title>MatchMaker: A Deep Learning Framework for Drug Synergy Prediction</title><author>Kuru, Halil Ibrahim ; Tastan, Oznur ; Cicek, A. Ercument</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-2dc1568c9dae8070497d7e7bbeb802aa36201d424a35440ab0371ff8d4351bf43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>cancer cell lines</topic><topic>chemical features</topic><topic>Chemicals</topic><topic>Combinatorial analysis</topic><topic>Computer applications</topic><topic>Computer architecture</topic><topic>Deep learning</topic><topic>drug synergy</topic><topic>Drugs</topic><topic>Gene expression</topic><topic>Microprocessors</topic><topic>Prediction algorithms</topic><topic>Predictive models</topic><topic>Side effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuru, Halil Ibrahim</creatorcontrib><creatorcontrib>Tastan, Oznur</creatorcontrib><creatorcontrib>Cicek, A. Ercument</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kuru, Halil Ibrahim</au><au>Tastan, Oznur</au><au>Cicek, A. Ercument</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MatchMaker: A Deep Learning Framework for Drug Synergy Prediction</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>19</volume><issue>4</issue><spage>2334</spage><epage>2344</epage><pages>2334-2344</pages><issn>1545-5963</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract><![CDATA[Drug combination therapies have been a viable strategy for the treatment of complex diseases such as cancer due to increased efficacy and reduced side effects. However, experimentally validating all possible combinations for synergistic interaction even with high-throughout screens is intractable due to vast combinatorial search space. Computational techniques can reduce the number of combinations to be evaluated experimentally by prioritizing promising candidates. We present MatchMaker that predicts drug synergy scores using drug chemical structure information and gene expression profiles of cell lines in a deep learning framework. For the first time, our model utilizes the largest known drug combination dataset to date, DrugComb. We compare the performance of MatchMaker with the state-of-the-art models and observe up to <inline-formula><tex-math notation="LaTeX">\sim 15\%</tex-math> <mml:math><mml:mrow><mml:mo>∼</mml:mo><mml:mn>15</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="kuru-ieq1-3086702.gif"/> </inline-formula> correlation and <inline-formula><tex-math notation="LaTeX">\sim 33\%</tex-math> <mml:math><mml:mrow><mml:mo>∼</mml:mo><mml:mn>33</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="kuru-ieq2-3086702.gif"/> </inline-formula> mean squared error (MSE) improvements over the next best method. We investigate the cell types and drug pairs that are relatively harder to predict and present novel candidate pairs. MatchMaker is built and available at https://github.com/tastanlab/matchmaker .]]></abstract><cop>New York</cop><pub>IEEE</pub><pmid>34086576</pmid><doi>10.1109/TCBB.2021.3086702</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8613-6619</orcidid><orcidid>https://orcid.org/0000-0001-7058-5372</orcidid><orcidid>https://orcid.org/0000-0003-4356-8846</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-5963
ispartof IEEE/ACM transactions on computational biology and bioinformatics, 2022-07, Vol.19 (4), p.2334-2344
issn 1545-5963
1557-9964
language eng
recordid cdi_crossref_primary_10_1109_TCBB_2021_3086702
source IEEE Electronic Library (IEL)
subjects cancer cell lines
chemical features
Chemicals
Combinatorial analysis
Computer applications
Computer architecture
Deep learning
drug synergy
Drugs
Gene expression
Microprocessors
Prediction algorithms
Predictive models
Side effects
title MatchMaker: A Deep Learning Framework for Drug Synergy Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T03%3A24%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MatchMaker:%20A%20Deep%20Learning%20Framework%20for%20Drug%20Synergy%20Prediction&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Kuru,%20Halil%20Ibrahim&rft.date=2022-07-01&rft.volume=19&rft.issue=4&rft.spage=2334&rft.epage=2344&rft.pages=2334-2344&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2021.3086702&rft_dat=%3Cproquest_RIE%3E2700414620%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700414620&rft_id=info:pmid/34086576&rft_ieee_id=9447196&rfr_iscdi=true