Maximum Covering Subtrees for Phylogenetic Networks
Tree-based phylogenetic networks, which may be roughly defined as leaf-labeled networks built by adding arcs only between the original tree edges, have elegant properties for modeling evolutionary histories. We answer an open question of Francis, Semple, and Steel about the complexity of determining...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on computational biology and bioinformatics 2021-11, Vol.18 (6), p.2823-2827 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2827 |
---|---|
container_issue | 6 |
container_start_page | 2823 |
container_title | IEEE/ACM transactions on computational biology and bioinformatics |
container_volume | 18 |
creator | Davidov, Nathan Hernandez, Amanda Jian, Justin McKenna, Patrick Medlin, K.A. Mojumder, Roadra Owen, Megan Quijano, Andrew Rodriguez, Amanda St. John, Katherine Thai, Katherine Uraga, Meliza |
description | Tree-based phylogenetic networks, which may be roughly defined as leaf-labeled networks built by adding arcs only between the original tree edges, have elegant properties for modeling evolutionary histories. We answer an open question of Francis, Semple, and Steel about the complexity of determining how far a phylogenetic network is from being tree-based, including non-binary phylogenetic networks. We show that finding a phylogenetic tree covering the maximum number of nodes in a phylogenetic network can be computed in polynomial time via an encoding into a minimum-cost flow problem. |
doi_str_mv | 10.1109/TCBB.2020.3040910 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCBB_2020_3040910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9272681</ieee_id><sourcerecordid>2465440892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-5bccae03be75d7dde3e3ac3db0ce42795156607c5ba75e7205e1f5fc64b07bfd3</originalsourceid><addsrcrecordid>eNpdkEtLw0AQgBdRbK3-ABEk4MVL6uwr2z3a4AvqA6znJdlMamrT1N1E7b83obUHTzMw37w-Qk4pDCkFfTWNx-MhAwZDDgI0hT3Sp1KqUOtI7He5kKHUEe-RI-_nAExoEIekxzkTjIPuE_6Y_BRlUwZx9YWuWM6C1yatHaIP8soFL-_rRTXDJdaFDZ6w_q7chz8mB3my8HiyjQPydnszje_DyfPdQ3w9CS0HWocytTZB4CkqmaksQ448sTxLwaJgSksqowiUlWmiJCoGEmkucxuJFFSaZ3xALjdzV676bNDXpiy8xcUiWWLVeMNEJIWAkWYtevEPnVeNW7bXGdbuGOn23Y6iG8q6ynuHuVm5okzc2lAwnVHTGTWdUbM12vacbyc3aYnZruNPYQucbYACEXdlzRSLRpT_AtdfeRE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607894232</pqid></control><display><type>article</type><title>Maximum Covering Subtrees for Phylogenetic Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Davidov, Nathan ; Hernandez, Amanda ; Jian, Justin ; McKenna, Patrick ; Medlin, K.A. ; Mojumder, Roadra ; Owen, Megan ; Quijano, Andrew ; Rodriguez, Amanda ; St. John, Katherine ; Thai, Katherine ; Uraga, Meliza</creator><creatorcontrib>Davidov, Nathan ; Hernandez, Amanda ; Jian, Justin ; McKenna, Patrick ; Medlin, K.A. ; Mojumder, Roadra ; Owen, Megan ; Quijano, Andrew ; Rodriguez, Amanda ; St. John, Katherine ; Thai, Katherine ; Uraga, Meliza</creatorcontrib><description>Tree-based phylogenetic networks, which may be roughly defined as leaf-labeled networks built by adding arcs only between the original tree edges, have elegant properties for modeling evolutionary histories. We answer an open question of Francis, Semple, and Steel about the complexity of determining how far a phylogenetic network is from being tree-based, including non-binary phylogenetic networks. We show that finding a phylogenetic tree covering the maximum number of nodes in a phylogenetic network can be computed in polynomial time via an encoding into a minimum-cost flow problem.</description><identifier>ISSN: 1545-5963</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2020.3040910</identifier><identifier>PMID: 33242309</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; complexity ; Complexity theory ; Computational Biology - methods ; Encoding ; Evolution, Molecular ; flow networks ; Models, Genetic ; Networks ; phylogenetic networks ; Phylogenetics ; Phylogeny ; Polynomials ; trees</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2021-11, Vol.18 (6), p.2823-2827</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c301t-5bccae03be75d7dde3e3ac3db0ce42795156607c5ba75e7205e1f5fc64b07bfd3</cites><orcidid>0000-0002-6673-4934 ; 0000-0001-8098-1096 ; 0000-0003-1657-8301 ; 0000-0002-2585-5537</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9272681$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9272681$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33242309$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Davidov, Nathan</creatorcontrib><creatorcontrib>Hernandez, Amanda</creatorcontrib><creatorcontrib>Jian, Justin</creatorcontrib><creatorcontrib>McKenna, Patrick</creatorcontrib><creatorcontrib>Medlin, K.A.</creatorcontrib><creatorcontrib>Mojumder, Roadra</creatorcontrib><creatorcontrib>Owen, Megan</creatorcontrib><creatorcontrib>Quijano, Andrew</creatorcontrib><creatorcontrib>Rodriguez, Amanda</creatorcontrib><creatorcontrib>St. John, Katherine</creatorcontrib><creatorcontrib>Thai, Katherine</creatorcontrib><creatorcontrib>Uraga, Meliza</creatorcontrib><title>Maximum Covering Subtrees for Phylogenetic Networks</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>Tree-based phylogenetic networks, which may be roughly defined as leaf-labeled networks built by adding arcs only between the original tree edges, have elegant properties for modeling evolutionary histories. We answer an open question of Francis, Semple, and Steel about the complexity of determining how far a phylogenetic network is from being tree-based, including non-binary phylogenetic networks. We show that finding a phylogenetic tree covering the maximum number of nodes in a phylogenetic network can be computed in polynomial time via an encoding into a minimum-cost flow problem.</description><subject>Algorithms</subject><subject>complexity</subject><subject>Complexity theory</subject><subject>Computational Biology - methods</subject><subject>Encoding</subject><subject>Evolution, Molecular</subject><subject>flow networks</subject><subject>Models, Genetic</subject><subject>Networks</subject><subject>phylogenetic networks</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Polynomials</subject><subject>trees</subject><issn>1545-5963</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkEtLw0AQgBdRbK3-ABEk4MVL6uwr2z3a4AvqA6znJdlMamrT1N1E7b83obUHTzMw37w-Qk4pDCkFfTWNx-MhAwZDDgI0hT3Sp1KqUOtI7He5kKHUEe-RI-_nAExoEIekxzkTjIPuE_6Y_BRlUwZx9YWuWM6C1yatHaIP8soFL-_rRTXDJdaFDZ6w_q7chz8mB3my8HiyjQPydnszje_DyfPdQ3w9CS0HWocytTZB4CkqmaksQ448sTxLwaJgSksqowiUlWmiJCoGEmkucxuJFFSaZ3xALjdzV676bNDXpiy8xcUiWWLVeMNEJIWAkWYtevEPnVeNW7bXGdbuGOn23Y6iG8q6ynuHuVm5okzc2lAwnVHTGTWdUbM12vacbyc3aYnZruNPYQucbYACEXdlzRSLRpT_AtdfeRE</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Davidov, Nathan</creator><creator>Hernandez, Amanda</creator><creator>Jian, Justin</creator><creator>McKenna, Patrick</creator><creator>Medlin, K.A.</creator><creator>Mojumder, Roadra</creator><creator>Owen, Megan</creator><creator>Quijano, Andrew</creator><creator>Rodriguez, Amanda</creator><creator>St. John, Katherine</creator><creator>Thai, Katherine</creator><creator>Uraga, Meliza</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6673-4934</orcidid><orcidid>https://orcid.org/0000-0001-8098-1096</orcidid><orcidid>https://orcid.org/0000-0003-1657-8301</orcidid><orcidid>https://orcid.org/0000-0002-2585-5537</orcidid></search><sort><creationdate>20211101</creationdate><title>Maximum Covering Subtrees for Phylogenetic Networks</title><author>Davidov, Nathan ; Hernandez, Amanda ; Jian, Justin ; McKenna, Patrick ; Medlin, K.A. ; Mojumder, Roadra ; Owen, Megan ; Quijano, Andrew ; Rodriguez, Amanda ; St. John, Katherine ; Thai, Katherine ; Uraga, Meliza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-5bccae03be75d7dde3e3ac3db0ce42795156607c5ba75e7205e1f5fc64b07bfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>complexity</topic><topic>Complexity theory</topic><topic>Computational Biology - methods</topic><topic>Encoding</topic><topic>Evolution, Molecular</topic><topic>flow networks</topic><topic>Models, Genetic</topic><topic>Networks</topic><topic>phylogenetic networks</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Polynomials</topic><topic>trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davidov, Nathan</creatorcontrib><creatorcontrib>Hernandez, Amanda</creatorcontrib><creatorcontrib>Jian, Justin</creatorcontrib><creatorcontrib>McKenna, Patrick</creatorcontrib><creatorcontrib>Medlin, K.A.</creatorcontrib><creatorcontrib>Mojumder, Roadra</creatorcontrib><creatorcontrib>Owen, Megan</creatorcontrib><creatorcontrib>Quijano, Andrew</creatorcontrib><creatorcontrib>Rodriguez, Amanda</creatorcontrib><creatorcontrib>St. John, Katherine</creatorcontrib><creatorcontrib>Thai, Katherine</creatorcontrib><creatorcontrib>Uraga, Meliza</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Davidov, Nathan</au><au>Hernandez, Amanda</au><au>Jian, Justin</au><au>McKenna, Patrick</au><au>Medlin, K.A.</au><au>Mojumder, Roadra</au><au>Owen, Megan</au><au>Quijano, Andrew</au><au>Rodriguez, Amanda</au><au>St. John, Katherine</au><au>Thai, Katherine</au><au>Uraga, Meliza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximum Covering Subtrees for Phylogenetic Networks</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>18</volume><issue>6</issue><spage>2823</spage><epage>2827</epage><pages>2823-2827</pages><issn>1545-5963</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>Tree-based phylogenetic networks, which may be roughly defined as leaf-labeled networks built by adding arcs only between the original tree edges, have elegant properties for modeling evolutionary histories. We answer an open question of Francis, Semple, and Steel about the complexity of determining how far a phylogenetic network is from being tree-based, including non-binary phylogenetic networks. We show that finding a phylogenetic tree covering the maximum number of nodes in a phylogenetic network can be computed in polynomial time via an encoding into a minimum-cost flow problem.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33242309</pmid><doi>10.1109/TCBB.2020.3040910</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6673-4934</orcidid><orcidid>https://orcid.org/0000-0001-8098-1096</orcidid><orcidid>https://orcid.org/0000-0003-1657-8301</orcidid><orcidid>https://orcid.org/0000-0002-2585-5537</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-5963 |
ispartof | IEEE/ACM transactions on computational biology and bioinformatics, 2021-11, Vol.18 (6), p.2823-2827 |
issn | 1545-5963 1557-9964 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCBB_2020_3040910 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms complexity Complexity theory Computational Biology - methods Encoding Evolution, Molecular flow networks Models, Genetic Networks phylogenetic networks Phylogenetics Phylogeny Polynomials trees |
title | Maximum Covering Subtrees for Phylogenetic Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A12%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximum%20Covering%20Subtrees%20for%20Phylogenetic%20Networks&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Davidov,%20Nathan&rft.date=2021-11-01&rft.volume=18&rft.issue=6&rft.spage=2823&rft.epage=2827&rft.pages=2823-2827&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2020.3040910&rft_dat=%3Cproquest_RIE%3E2465440892%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2607894232&rft_id=info:pmid/33242309&rft_ieee_id=9272681&rfr_iscdi=true |