Few-Shot Breast Cancer Metastases Classification via Unsupervised Cell Ranking

Tumor metastases detection is of great importance for the treatment of breast cancer patients. Various CNN (convolutional neural network) based methods get excellent performance in object detection/segmentation. However, the detection of metastases in hematoxylin and eosin (H&E) stained whole-sl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on computational biology and bioinformatics 2021-09, Vol.18 (5), p.1914-1923
Hauptverfasser: Chen, Jiaojiao, Jiao, Jianbo, He, Shengfeng, Han, Guoqiang, Qin, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1923
container_issue 5
container_start_page 1914
container_title IEEE/ACM transactions on computational biology and bioinformatics
container_volume 18
creator Chen, Jiaojiao
Jiao, Jianbo
He, Shengfeng
Han, Guoqiang
Qin, Jing
description Tumor metastases detection is of great importance for the treatment of breast cancer patients. Various CNN (convolutional neural network) based methods get excellent performance in object detection/segmentation. However, the detection of metastases in hematoxylin and eosin (H&E) stained whole-slide images (WSI) is still challenging mainly due to two aspects. (1) The resolution of the image is too large. (2) lacking labeled training data. Whole-slide images generally stored in a multi-resolution structure with multiple downsampled tiles. It is difficult to feed the whole image into memory without compression. Moreover, labeling images for the pathologists are time-consuming and expensive. In this paper, we study the problem of detecting breast cancer metastases in the pathological image on patch level. To address the abovementioned challenges, we propose a few-shot learning method to classify whether an image patch contains tumor cells. Specifically, we propose a patch-level unsupervised cell ranking approach, which only relies on images with limited labels. The main idea of the proposed method is that when cropping a patch A from the WSI and further cropping a sub-patch B from A, the cell number of A is always larger than that of B. Based on this observation, we make use of the unlabeled images to learn the ranking information of cell counting to extract the abstract features. Experimental results show that our method is effective to improve the patch-level classification accuracy, compared to the traditional supervised method. The source code is publicly available at https://github.com/fewshot-camelyon .
doi_str_mv 10.1109/TCBB.2019.2960019
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCBB_2019_2960019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8933386</ieee_id><sourcerecordid>2580098740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-1fe0cac9010028132a5b8cf11d66fbb7983471fad1204635a60f453e6685654c3</originalsourceid><addsrcrecordid>eNpdkE1PGzEQhi3UCkLgB1SVqpV64bJh_Ln2sVmRFgmoBMnZcpzZ1mmym9q7IP59HSVw6GlmNM-MXj2EfKIwoRTM9byeTicMqJkwoyDXEzKiUlalMUp82PdCltIofkbOU1oDMGFAnJIzTrWggsGIPMzwpXz63fXFNKJLfVG71mMs7rHPk0uYinrjUgpN8K4PXVs8B1cs2jTsMD6HhKuixs2meHTtn9D-uiAfG7dJeHmsY7KY3czrH-Xdz--39be70nPD-pI2CN55AzRn0pQzJ5faN5SulGqWy8poLirauBVlIBSXTkEjJEeltFRSeD4mV4e_u9j9HTD1dhuSz0Fci92QLOOsMlxCpTL69T903Q2xzekskxrA6EpApuiB8rFLKWJjdzFsXXy1FOxett3LtnvZ9ig733w5fh6WW1y9X7zZzcDnAxAQ8X2tDedcK_4PVLOA0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580098740</pqid></control><display><type>article</type><title>Few-Shot Breast Cancer Metastases Classification via Unsupervised Cell Ranking</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Jiaojiao ; Jiao, Jianbo ; He, Shengfeng ; Han, Guoqiang ; Qin, Jing</creator><creatorcontrib>Chen, Jiaojiao ; Jiao, Jianbo ; He, Shengfeng ; Han, Guoqiang ; Qin, Jing</creatorcontrib><description>Tumor metastases detection is of great importance for the treatment of breast cancer patients. Various CNN (convolutional neural network) based methods get excellent performance in object detection/segmentation. However, the detection of metastases in hematoxylin and eosin (H&amp;E) stained whole-slide images (WSI) is still challenging mainly due to two aspects. (1) The resolution of the image is too large. (2) lacking labeled training data. Whole-slide images generally stored in a multi-resolution structure with multiple downsampled tiles. It is difficult to feed the whole image into memory without compression. Moreover, labeling images for the pathologists are time-consuming and expensive. In this paper, we study the problem of detecting breast cancer metastases in the pathological image on patch level. To address the abovementioned challenges, we propose a few-shot learning method to classify whether an image patch contains tumor cells. Specifically, we propose a patch-level unsupervised cell ranking approach, which only relies on images with limited labels. The main idea of the proposed method is that when cropping a patch A from the WSI and further cropping a sub-patch B from A, the cell number of A is always larger than that of B. Based on this observation, we make use of the unlabeled images to learn the ranking information of cell counting to extract the abstract features. Experimental results show that our method is effective to improve the patch-level classification accuracy, compared to the traditional supervised method. The source code is publicly available at https://github.com/fewshot-camelyon .</description><identifier>ISSN: 1545-5963</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2019.2960019</identifier><identifier>PMID: 31841420</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Breast cancer ; Breast Neoplasms - diagnostic imaging ; Breast Neoplasms - pathology ; Cell Count - methods ; Cell number ; Compression ; Feature extraction ; Female ; Few-shot learning ; Histocytochemistry ; Humans ; Image classification ; Image compression ; Image Interpretation, Computer-Assisted - methods ; Image segmentation ; Labels ; Learning ; Lymph Nodes - diagnostic imaging ; Lymph Nodes - pathology ; Machine learning ; Medical imaging ; Metastases ; metastases classification ; Metastasis ; Neoplasm Metastasis - diagnostic imaging ; Neoplasm Metastasis - pathology ; Neural networks ; Neural Networks, Computer ; Object recognition ; Pathology ; Ranking ; Source code ; Task analysis ; Training data ; Tumor cells ; Tumors ; unsupervised learning ; Unsupervised Machine Learning</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2021-09, Vol.18 (5), p.1914-1923</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-1fe0cac9010028132a5b8cf11d66fbb7983471fad1204635a60f453e6685654c3</citedby><cites>FETCH-LOGICAL-c392t-1fe0cac9010028132a5b8cf11d66fbb7983471fad1204635a60f453e6685654c3</cites><orcidid>0000-0002-2035-7598 ; 0000-0002-9687-3900 ; 0000-0002-3802-4644 ; 0000-0002-2961-0860 ; 0000-0003-0833-5115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8933386$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8933386$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31841420$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Jiaojiao</creatorcontrib><creatorcontrib>Jiao, Jianbo</creatorcontrib><creatorcontrib>He, Shengfeng</creatorcontrib><creatorcontrib>Han, Guoqiang</creatorcontrib><creatorcontrib>Qin, Jing</creatorcontrib><title>Few-Shot Breast Cancer Metastases Classification via Unsupervised Cell Ranking</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>Tumor metastases detection is of great importance for the treatment of breast cancer patients. Various CNN (convolutional neural network) based methods get excellent performance in object detection/segmentation. However, the detection of metastases in hematoxylin and eosin (H&amp;E) stained whole-slide images (WSI) is still challenging mainly due to two aspects. (1) The resolution of the image is too large. (2) lacking labeled training data. Whole-slide images generally stored in a multi-resolution structure with multiple downsampled tiles. It is difficult to feed the whole image into memory without compression. Moreover, labeling images for the pathologists are time-consuming and expensive. In this paper, we study the problem of detecting breast cancer metastases in the pathological image on patch level. To address the abovementioned challenges, we propose a few-shot learning method to classify whether an image patch contains tumor cells. Specifically, we propose a patch-level unsupervised cell ranking approach, which only relies on images with limited labels. The main idea of the proposed method is that when cropping a patch A from the WSI and further cropping a sub-patch B from A, the cell number of A is always larger than that of B. Based on this observation, we make use of the unlabeled images to learn the ranking information of cell counting to extract the abstract features. Experimental results show that our method is effective to improve the patch-level classification accuracy, compared to the traditional supervised method. The source code is publicly available at https://github.com/fewshot-camelyon .</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>Breast Neoplasms - pathology</subject><subject>Cell Count - methods</subject><subject>Cell number</subject><subject>Compression</subject><subject>Feature extraction</subject><subject>Female</subject><subject>Few-shot learning</subject><subject>Histocytochemistry</subject><subject>Humans</subject><subject>Image classification</subject><subject>Image compression</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Labels</subject><subject>Learning</subject><subject>Lymph Nodes - diagnostic imaging</subject><subject>Lymph Nodes - pathology</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Metastases</subject><subject>metastases classification</subject><subject>Metastasis</subject><subject>Neoplasm Metastasis - diagnostic imaging</subject><subject>Neoplasm Metastasis - pathology</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Object recognition</subject><subject>Pathology</subject><subject>Ranking</subject><subject>Source code</subject><subject>Task analysis</subject><subject>Training data</subject><subject>Tumor cells</subject><subject>Tumors</subject><subject>unsupervised learning</subject><subject>Unsupervised Machine Learning</subject><issn>1545-5963</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE1PGzEQhi3UCkLgB1SVqpV64bJh_Ln2sVmRFgmoBMnZcpzZ1mmym9q7IP59HSVw6GlmNM-MXj2EfKIwoRTM9byeTicMqJkwoyDXEzKiUlalMUp82PdCltIofkbOU1oDMGFAnJIzTrWggsGIPMzwpXz63fXFNKJLfVG71mMs7rHPk0uYinrjUgpN8K4PXVs8B1cs2jTsMD6HhKuixs2meHTtn9D-uiAfG7dJeHmsY7KY3czrH-Xdz--39be70nPD-pI2CN55AzRn0pQzJ5faN5SulGqWy8poLirauBVlIBSXTkEjJEeltFRSeD4mV4e_u9j9HTD1dhuSz0Fci92QLOOsMlxCpTL69T903Q2xzekskxrA6EpApuiB8rFLKWJjdzFsXXy1FOxett3LtnvZ9ig733w5fh6WW1y9X7zZzcDnAxAQ8X2tDedcK_4PVLOA0w</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Chen, Jiaojiao</creator><creator>Jiao, Jianbo</creator><creator>He, Shengfeng</creator><creator>Han, Guoqiang</creator><creator>Qin, Jing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2035-7598</orcidid><orcidid>https://orcid.org/0000-0002-9687-3900</orcidid><orcidid>https://orcid.org/0000-0002-3802-4644</orcidid><orcidid>https://orcid.org/0000-0002-2961-0860</orcidid><orcidid>https://orcid.org/0000-0003-0833-5115</orcidid></search><sort><creationdate>20210901</creationdate><title>Few-Shot Breast Cancer Metastases Classification via Unsupervised Cell Ranking</title><author>Chen, Jiaojiao ; Jiao, Jianbo ; He, Shengfeng ; Han, Guoqiang ; Qin, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-1fe0cac9010028132a5b8cf11d66fbb7983471fad1204635a60f453e6685654c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>Breast Neoplasms - pathology</topic><topic>Cell Count - methods</topic><topic>Cell number</topic><topic>Compression</topic><topic>Feature extraction</topic><topic>Female</topic><topic>Few-shot learning</topic><topic>Histocytochemistry</topic><topic>Humans</topic><topic>Image classification</topic><topic>Image compression</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Labels</topic><topic>Learning</topic><topic>Lymph Nodes - diagnostic imaging</topic><topic>Lymph Nodes - pathology</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Metastases</topic><topic>metastases classification</topic><topic>Metastasis</topic><topic>Neoplasm Metastasis - diagnostic imaging</topic><topic>Neoplasm Metastasis - pathology</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Object recognition</topic><topic>Pathology</topic><topic>Ranking</topic><topic>Source code</topic><topic>Task analysis</topic><topic>Training data</topic><topic>Tumor cells</topic><topic>Tumors</topic><topic>unsupervised learning</topic><topic>Unsupervised Machine Learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jiaojiao</creatorcontrib><creatorcontrib>Jiao, Jianbo</creatorcontrib><creatorcontrib>He, Shengfeng</creatorcontrib><creatorcontrib>Han, Guoqiang</creatorcontrib><creatorcontrib>Qin, Jing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Jiaojiao</au><au>Jiao, Jianbo</au><au>He, Shengfeng</au><au>Han, Guoqiang</au><au>Qin, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Few-Shot Breast Cancer Metastases Classification via Unsupervised Cell Ranking</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>18</volume><issue>5</issue><spage>1914</spage><epage>1923</epage><pages>1914-1923</pages><issn>1545-5963</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>Tumor metastases detection is of great importance for the treatment of breast cancer patients. Various CNN (convolutional neural network) based methods get excellent performance in object detection/segmentation. However, the detection of metastases in hematoxylin and eosin (H&amp;E) stained whole-slide images (WSI) is still challenging mainly due to two aspects. (1) The resolution of the image is too large. (2) lacking labeled training data. Whole-slide images generally stored in a multi-resolution structure with multiple downsampled tiles. It is difficult to feed the whole image into memory without compression. Moreover, labeling images for the pathologists are time-consuming and expensive. In this paper, we study the problem of detecting breast cancer metastases in the pathological image on patch level. To address the abovementioned challenges, we propose a few-shot learning method to classify whether an image patch contains tumor cells. Specifically, we propose a patch-level unsupervised cell ranking approach, which only relies on images with limited labels. The main idea of the proposed method is that when cropping a patch A from the WSI and further cropping a sub-patch B from A, the cell number of A is always larger than that of B. Based on this observation, we make use of the unlabeled images to learn the ranking information of cell counting to extract the abstract features. Experimental results show that our method is effective to improve the patch-level classification accuracy, compared to the traditional supervised method. The source code is publicly available at https://github.com/fewshot-camelyon .</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31841420</pmid><doi>10.1109/TCBB.2019.2960019</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2035-7598</orcidid><orcidid>https://orcid.org/0000-0002-9687-3900</orcidid><orcidid>https://orcid.org/0000-0002-3802-4644</orcidid><orcidid>https://orcid.org/0000-0002-2961-0860</orcidid><orcidid>https://orcid.org/0000-0003-0833-5115</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-5963
ispartof IEEE/ACM transactions on computational biology and bioinformatics, 2021-09, Vol.18 (5), p.1914-1923
issn 1545-5963
1557-9964
language eng
recordid cdi_crossref_primary_10_1109_TCBB_2019_2960019
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial neural networks
Breast cancer
Breast Neoplasms - diagnostic imaging
Breast Neoplasms - pathology
Cell Count - methods
Cell number
Compression
Feature extraction
Female
Few-shot learning
Histocytochemistry
Humans
Image classification
Image compression
Image Interpretation, Computer-Assisted - methods
Image segmentation
Labels
Learning
Lymph Nodes - diagnostic imaging
Lymph Nodes - pathology
Machine learning
Medical imaging
Metastases
metastases classification
Metastasis
Neoplasm Metastasis - diagnostic imaging
Neoplasm Metastasis - pathology
Neural networks
Neural Networks, Computer
Object recognition
Pathology
Ranking
Source code
Task analysis
Training data
Tumor cells
Tumors
unsupervised learning
Unsupervised Machine Learning
title Few-Shot Breast Cancer Metastases Classification via Unsupervised Cell Ranking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A24%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Few-Shot%20Breast%20Cancer%20Metastases%20Classification%20via%20Unsupervised%20Cell%20Ranking&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Chen,%20Jiaojiao&rft.date=2021-09-01&rft.volume=18&rft.issue=5&rft.spage=1914&rft.epage=1923&rft.pages=1914-1923&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2019.2960019&rft_dat=%3Cproquest_RIE%3E2580098740%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580098740&rft_id=info:pmid/31841420&rft_ieee_id=8933386&rfr_iscdi=true