Few-Shot Breast Cancer Metastases Classification via Unsupervised Cell Ranking
Tumor metastases detection is of great importance for the treatment of breast cancer patients. Various CNN (convolutional neural network) based methods get excellent performance in object detection/segmentation. However, the detection of metastases in hematoxylin and eosin (H&E) stained whole-sl...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on computational biology and bioinformatics 2021-09, Vol.18 (5), p.1914-1923 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1923 |
---|---|
container_issue | 5 |
container_start_page | 1914 |
container_title | IEEE/ACM transactions on computational biology and bioinformatics |
container_volume | 18 |
creator | Chen, Jiaojiao Jiao, Jianbo He, Shengfeng Han, Guoqiang Qin, Jing |
description | Tumor metastases detection is of great importance for the treatment of breast cancer patients. Various CNN (convolutional neural network) based methods get excellent performance in object detection/segmentation. However, the detection of metastases in hematoxylin and eosin (H&E) stained whole-slide images (WSI) is still challenging mainly due to two aspects. (1) The resolution of the image is too large. (2) lacking labeled training data. Whole-slide images generally stored in a multi-resolution structure with multiple downsampled tiles. It is difficult to feed the whole image into memory without compression. Moreover, labeling images for the pathologists are time-consuming and expensive. In this paper, we study the problem of detecting breast cancer metastases in the pathological image on patch level. To address the abovementioned challenges, we propose a few-shot learning method to classify whether an image patch contains tumor cells. Specifically, we propose a patch-level unsupervised cell ranking approach, which only relies on images with limited labels. The main idea of the proposed method is that when cropping a patch A from the WSI and further cropping a sub-patch B from A, the cell number of A is always larger than that of B. Based on this observation, we make use of the unlabeled images to learn the ranking information of cell counting to extract the abstract features. Experimental results show that our method is effective to improve the patch-level classification accuracy, compared to the traditional supervised method. The source code is publicly available at https://github.com/fewshot-camelyon . |
doi_str_mv | 10.1109/TCBB.2019.2960019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCBB_2019_2960019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8933386</ieee_id><sourcerecordid>2580098740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-1fe0cac9010028132a5b8cf11d66fbb7983471fad1204635a60f453e6685654c3</originalsourceid><addsrcrecordid>eNpdkE1PGzEQhi3UCkLgB1SVqpV64bJh_Ln2sVmRFgmoBMnZcpzZ1mmym9q7IP59HSVw6GlmNM-MXj2EfKIwoRTM9byeTicMqJkwoyDXEzKiUlalMUp82PdCltIofkbOU1oDMGFAnJIzTrWggsGIPMzwpXz63fXFNKJLfVG71mMs7rHPk0uYinrjUgpN8K4PXVs8B1cs2jTsMD6HhKuixs2meHTtn9D-uiAfG7dJeHmsY7KY3czrH-Xdz--39be70nPD-pI2CN55AzRn0pQzJ5faN5SulGqWy8poLirauBVlIBSXTkEjJEeltFRSeD4mV4e_u9j9HTD1dhuSz0Fci92QLOOsMlxCpTL69T903Q2xzekskxrA6EpApuiB8rFLKWJjdzFsXXy1FOxett3LtnvZ9ig733w5fh6WW1y9X7zZzcDnAxAQ8X2tDedcK_4PVLOA0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580098740</pqid></control><display><type>article</type><title>Few-Shot Breast Cancer Metastases Classification via Unsupervised Cell Ranking</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Jiaojiao ; Jiao, Jianbo ; He, Shengfeng ; Han, Guoqiang ; Qin, Jing</creator><creatorcontrib>Chen, Jiaojiao ; Jiao, Jianbo ; He, Shengfeng ; Han, Guoqiang ; Qin, Jing</creatorcontrib><description>Tumor metastases detection is of great importance for the treatment of breast cancer patients. Various CNN (convolutional neural network) based methods get excellent performance in object detection/segmentation. However, the detection of metastases in hematoxylin and eosin (H&E) stained whole-slide images (WSI) is still challenging mainly due to two aspects. (1) The resolution of the image is too large. (2) lacking labeled training data. Whole-slide images generally stored in a multi-resolution structure with multiple downsampled tiles. It is difficult to feed the whole image into memory without compression. Moreover, labeling images for the pathologists are time-consuming and expensive. In this paper, we study the problem of detecting breast cancer metastases in the pathological image on patch level. To address the abovementioned challenges, we propose a few-shot learning method to classify whether an image patch contains tumor cells. Specifically, we propose a patch-level unsupervised cell ranking approach, which only relies on images with limited labels. The main idea of the proposed method is that when cropping a patch A from the WSI and further cropping a sub-patch B from A, the cell number of A is always larger than that of B. Based on this observation, we make use of the unlabeled images to learn the ranking information of cell counting to extract the abstract features. Experimental results show that our method is effective to improve the patch-level classification accuracy, compared to the traditional supervised method. The source code is publicly available at https://github.com/fewshot-camelyon .</description><identifier>ISSN: 1545-5963</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2019.2960019</identifier><identifier>PMID: 31841420</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Breast cancer ; Breast Neoplasms - diagnostic imaging ; Breast Neoplasms - pathology ; Cell Count - methods ; Cell number ; Compression ; Feature extraction ; Female ; Few-shot learning ; Histocytochemistry ; Humans ; Image classification ; Image compression ; Image Interpretation, Computer-Assisted - methods ; Image segmentation ; Labels ; Learning ; Lymph Nodes - diagnostic imaging ; Lymph Nodes - pathology ; Machine learning ; Medical imaging ; Metastases ; metastases classification ; Metastasis ; Neoplasm Metastasis - diagnostic imaging ; Neoplasm Metastasis - pathology ; Neural networks ; Neural Networks, Computer ; Object recognition ; Pathology ; Ranking ; Source code ; Task analysis ; Training data ; Tumor cells ; Tumors ; unsupervised learning ; Unsupervised Machine Learning</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2021-09, Vol.18 (5), p.1914-1923</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-1fe0cac9010028132a5b8cf11d66fbb7983471fad1204635a60f453e6685654c3</citedby><cites>FETCH-LOGICAL-c392t-1fe0cac9010028132a5b8cf11d66fbb7983471fad1204635a60f453e6685654c3</cites><orcidid>0000-0002-2035-7598 ; 0000-0002-9687-3900 ; 0000-0002-3802-4644 ; 0000-0002-2961-0860 ; 0000-0003-0833-5115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8933386$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8933386$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31841420$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Jiaojiao</creatorcontrib><creatorcontrib>Jiao, Jianbo</creatorcontrib><creatorcontrib>He, Shengfeng</creatorcontrib><creatorcontrib>Han, Guoqiang</creatorcontrib><creatorcontrib>Qin, Jing</creatorcontrib><title>Few-Shot Breast Cancer Metastases Classification via Unsupervised Cell Ranking</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>Tumor metastases detection is of great importance for the treatment of breast cancer patients. Various CNN (convolutional neural network) based methods get excellent performance in object detection/segmentation. However, the detection of metastases in hematoxylin and eosin (H&E) stained whole-slide images (WSI) is still challenging mainly due to two aspects. (1) The resolution of the image is too large. (2) lacking labeled training data. Whole-slide images generally stored in a multi-resolution structure with multiple downsampled tiles. It is difficult to feed the whole image into memory without compression. Moreover, labeling images for the pathologists are time-consuming and expensive. In this paper, we study the problem of detecting breast cancer metastases in the pathological image on patch level. To address the abovementioned challenges, we propose a few-shot learning method to classify whether an image patch contains tumor cells. Specifically, we propose a patch-level unsupervised cell ranking approach, which only relies on images with limited labels. The main idea of the proposed method is that when cropping a patch A from the WSI and further cropping a sub-patch B from A, the cell number of A is always larger than that of B. Based on this observation, we make use of the unlabeled images to learn the ranking information of cell counting to extract the abstract features. Experimental results show that our method is effective to improve the patch-level classification accuracy, compared to the traditional supervised method. The source code is publicly available at https://github.com/fewshot-camelyon .</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>Breast Neoplasms - pathology</subject><subject>Cell Count - methods</subject><subject>Cell number</subject><subject>Compression</subject><subject>Feature extraction</subject><subject>Female</subject><subject>Few-shot learning</subject><subject>Histocytochemistry</subject><subject>Humans</subject><subject>Image classification</subject><subject>Image compression</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Labels</subject><subject>Learning</subject><subject>Lymph Nodes - diagnostic imaging</subject><subject>Lymph Nodes - pathology</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Metastases</subject><subject>metastases classification</subject><subject>Metastasis</subject><subject>Neoplasm Metastasis - diagnostic imaging</subject><subject>Neoplasm Metastasis - pathology</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Object recognition</subject><subject>Pathology</subject><subject>Ranking</subject><subject>Source code</subject><subject>Task analysis</subject><subject>Training data</subject><subject>Tumor cells</subject><subject>Tumors</subject><subject>unsupervised learning</subject><subject>Unsupervised Machine Learning</subject><issn>1545-5963</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE1PGzEQhi3UCkLgB1SVqpV64bJh_Ln2sVmRFgmoBMnZcpzZ1mmym9q7IP59HSVw6GlmNM-MXj2EfKIwoRTM9byeTicMqJkwoyDXEzKiUlalMUp82PdCltIofkbOU1oDMGFAnJIzTrWggsGIPMzwpXz63fXFNKJLfVG71mMs7rHPk0uYinrjUgpN8K4PXVs8B1cs2jTsMD6HhKuixs2meHTtn9D-uiAfG7dJeHmsY7KY3czrH-Xdz--39be70nPD-pI2CN55AzRn0pQzJ5faN5SulGqWy8poLirauBVlIBSXTkEjJEeltFRSeD4mV4e_u9j9HTD1dhuSz0Fci92QLOOsMlxCpTL69T903Q2xzekskxrA6EpApuiB8rFLKWJjdzFsXXy1FOxett3LtnvZ9ig733w5fh6WW1y9X7zZzcDnAxAQ8X2tDedcK_4PVLOA0w</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Chen, Jiaojiao</creator><creator>Jiao, Jianbo</creator><creator>He, Shengfeng</creator><creator>Han, Guoqiang</creator><creator>Qin, Jing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2035-7598</orcidid><orcidid>https://orcid.org/0000-0002-9687-3900</orcidid><orcidid>https://orcid.org/0000-0002-3802-4644</orcidid><orcidid>https://orcid.org/0000-0002-2961-0860</orcidid><orcidid>https://orcid.org/0000-0003-0833-5115</orcidid></search><sort><creationdate>20210901</creationdate><title>Few-Shot Breast Cancer Metastases Classification via Unsupervised Cell Ranking</title><author>Chen, Jiaojiao ; Jiao, Jianbo ; He, Shengfeng ; Han, Guoqiang ; Qin, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-1fe0cac9010028132a5b8cf11d66fbb7983471fad1204635a60f453e6685654c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>Breast Neoplasms - pathology</topic><topic>Cell Count - methods</topic><topic>Cell number</topic><topic>Compression</topic><topic>Feature extraction</topic><topic>Female</topic><topic>Few-shot learning</topic><topic>Histocytochemistry</topic><topic>Humans</topic><topic>Image classification</topic><topic>Image compression</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Labels</topic><topic>Learning</topic><topic>Lymph Nodes - diagnostic imaging</topic><topic>Lymph Nodes - pathology</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Metastases</topic><topic>metastases classification</topic><topic>Metastasis</topic><topic>Neoplasm Metastasis - diagnostic imaging</topic><topic>Neoplasm Metastasis - pathology</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Object recognition</topic><topic>Pathology</topic><topic>Ranking</topic><topic>Source code</topic><topic>Task analysis</topic><topic>Training data</topic><topic>Tumor cells</topic><topic>Tumors</topic><topic>unsupervised learning</topic><topic>Unsupervised Machine Learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jiaojiao</creatorcontrib><creatorcontrib>Jiao, Jianbo</creatorcontrib><creatorcontrib>He, Shengfeng</creatorcontrib><creatorcontrib>Han, Guoqiang</creatorcontrib><creatorcontrib>Qin, Jing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Jiaojiao</au><au>Jiao, Jianbo</au><au>He, Shengfeng</au><au>Han, Guoqiang</au><au>Qin, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Few-Shot Breast Cancer Metastases Classification via Unsupervised Cell Ranking</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>18</volume><issue>5</issue><spage>1914</spage><epage>1923</epage><pages>1914-1923</pages><issn>1545-5963</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>Tumor metastases detection is of great importance for the treatment of breast cancer patients. Various CNN (convolutional neural network) based methods get excellent performance in object detection/segmentation. However, the detection of metastases in hematoxylin and eosin (H&E) stained whole-slide images (WSI) is still challenging mainly due to two aspects. (1) The resolution of the image is too large. (2) lacking labeled training data. Whole-slide images generally stored in a multi-resolution structure with multiple downsampled tiles. It is difficult to feed the whole image into memory without compression. Moreover, labeling images for the pathologists are time-consuming and expensive. In this paper, we study the problem of detecting breast cancer metastases in the pathological image on patch level. To address the abovementioned challenges, we propose a few-shot learning method to classify whether an image patch contains tumor cells. Specifically, we propose a patch-level unsupervised cell ranking approach, which only relies on images with limited labels. The main idea of the proposed method is that when cropping a patch A from the WSI and further cropping a sub-patch B from A, the cell number of A is always larger than that of B. Based on this observation, we make use of the unlabeled images to learn the ranking information of cell counting to extract the abstract features. Experimental results show that our method is effective to improve the patch-level classification accuracy, compared to the traditional supervised method. The source code is publicly available at https://github.com/fewshot-camelyon .</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31841420</pmid><doi>10.1109/TCBB.2019.2960019</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2035-7598</orcidid><orcidid>https://orcid.org/0000-0002-9687-3900</orcidid><orcidid>https://orcid.org/0000-0002-3802-4644</orcidid><orcidid>https://orcid.org/0000-0002-2961-0860</orcidid><orcidid>https://orcid.org/0000-0003-0833-5115</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-5963 |
ispartof | IEEE/ACM transactions on computational biology and bioinformatics, 2021-09, Vol.18 (5), p.1914-1923 |
issn | 1545-5963 1557-9964 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCBB_2019_2960019 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Artificial neural networks Breast cancer Breast Neoplasms - diagnostic imaging Breast Neoplasms - pathology Cell Count - methods Cell number Compression Feature extraction Female Few-shot learning Histocytochemistry Humans Image classification Image compression Image Interpretation, Computer-Assisted - methods Image segmentation Labels Learning Lymph Nodes - diagnostic imaging Lymph Nodes - pathology Machine learning Medical imaging Metastases metastases classification Metastasis Neoplasm Metastasis - diagnostic imaging Neoplasm Metastasis - pathology Neural networks Neural Networks, Computer Object recognition Pathology Ranking Source code Task analysis Training data Tumor cells Tumors unsupervised learning Unsupervised Machine Learning |
title | Few-Shot Breast Cancer Metastases Classification via Unsupervised Cell Ranking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A24%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Few-Shot%20Breast%20Cancer%20Metastases%20Classification%20via%20Unsupervised%20Cell%20Ranking&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Chen,%20Jiaojiao&rft.date=2021-09-01&rft.volume=18&rft.issue=5&rft.spage=1914&rft.epage=1923&rft.pages=1914-1923&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2019.2960019&rft_dat=%3Cproquest_RIE%3E2580098740%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580098740&rft_id=info:pmid/31841420&rft_ieee_id=8933386&rfr_iscdi=true |