Extracting Inter-Sentence Relations for Associating Biological Context with Events in Biomedical Texts

We present an analysis of the problem of identifying biological context and associating it with biochemical events described in biomedical texts. This constitutes a non-trivial, inter-sentential relation extraction task. We focus on biological context as descriptions of the species, tissue type, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on computational biology and bioinformatics 2020-11, Vol.17 (6), p.1895-1906
Hauptverfasser: Noriega-Atala, Enrique, Hein, Paul D., Thumsi, Shraddha S., Wong, Zechy, Wang, Xia, Hendryx, Sean M., Morrison, Clayton T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1906
container_issue 6
container_start_page 1895
container_title IEEE/ACM transactions on computational biology and bioinformatics
container_volume 17
creator Noriega-Atala, Enrique
Hein, Paul D.
Thumsi, Shraddha S.
Wong, Zechy
Wang, Xia
Hendryx, Sean M.
Morrison, Clayton T.
description We present an analysis of the problem of identifying biological context and associating it with biochemical events described in biomedical texts. This constitutes a non-trivial, inter-sentential relation extraction task. We focus on biological context as descriptions of the species, tissue type, and cell type that are associated with biochemical events. We present a new corpus of open access biomedical texts that have been annotated by biology subject matter experts to highlight context-event relations. Using this corpus, we evaluate several classifiers for context-event association along with a detailed analysis of the impact of a variety of linguistic features on classifier performance. We find that gradient tree boosting performs by far the best, achieving an F1 of 0.865 in a cross-validation study.
doi_str_mv 10.1109/TCBB.2019.2904231
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCBB_2019_2904231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8664185</ieee_id><sourcerecordid>2468772218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-207938da3022617175b3115ee031a9f8b9d0740d3db5c4704a6752c3d014cac43</originalsourceid><addsrcrecordid>eNpd0UtLAzEQB_Agiu8PIIIsePGyNZPn5mhLfYAgaD2HNJvVyHajydbHtzdrqwdPE5jfDGH-CB0BHgFgdT6bjMcjgkGNiMKMUNhAu8C5LJUSbHN4M15yJegO2kvpBWPCsttGOxRXQgmidlEz_eyjsb3vnoqbrnexfHC5dNYV9641vQ9dKpoQi4uUgvXmB459aMOTt6YtJiHrz7748P1zMX3Ps6nw3SAWrv4Rs9xOB2irMW1yh-u6jx4vp7PJdXl7d3UzubgtLWWqLwmWila1oZgQARIkn1MA7hymYFRTzVWNJcM1refcMomZEZITS2sMzBrL6D46W-19jeFt6VKvFz5Z17amc2GZNAEFlDNFeKan_-hLWMYu_04TJiopCYEqK1gpG0NK0TX6NfqFiV8asB5C0EMIeghBr0PIMyfrzct5vsLfxO_VMzheAe-c-2tXQjCoOP0Gn_SJ_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468772218</pqid></control><display><type>article</type><title>Extracting Inter-Sentence Relations for Associating Biological Context with Events in Biomedical Texts</title><source>IEEE Electronic Library (IEL)</source><creator>Noriega-Atala, Enrique ; Hein, Paul D. ; Thumsi, Shraddha S. ; Wong, Zechy ; Wang, Xia ; Hendryx, Sean M. ; Morrison, Clayton T.</creator><creatorcontrib>Noriega-Atala, Enrique ; Hein, Paul D. ; Thumsi, Shraddha S. ; Wong, Zechy ; Wang, Xia ; Hendryx, Sean M. ; Morrison, Clayton T.</creatorcontrib><description>We present an analysis of the problem of identifying biological context and associating it with biochemical events described in biomedical texts. This constitutes a non-trivial, inter-sentential relation extraction task. We focus on biological context as descriptions of the species, tissue type, and cell type that are associated with biochemical events. We present a new corpus of open access biomedical texts that have been annotated by biology subject matter experts to highlight context-event relations. Using this corpus, we evaluate several classifiers for context-event association along with a detailed analysis of the impact of a variety of linguistic features on classifier performance. We find that gradient tree boosting performs by far the best, achieving an F1 of 0.865 in a cross-validation study.</description><identifier>ISSN: 1545-5963</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2019.2904231</identifier><identifier>PMID: 30869629</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Bioinformatics ; Biological information theory ; Classifiers ; Context ; Context awareness ; Data mining ; Feature extraction ; Impact analysis ; inter-sentence relation extraction ; Knowledge based systems ; Linguistics ; NLP ; Texts</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2020-11, Vol.17 (6), p.1895-1906</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-207938da3022617175b3115ee031a9f8b9d0740d3db5c4704a6752c3d014cac43</citedby><cites>FETCH-LOGICAL-c349t-207938da3022617175b3115ee031a9f8b9d0740d3db5c4704a6752c3d014cac43</cites><orcidid>0000-0002-9410-0605 ; 0000-0001-7150-2989 ; 0000-0002-3606-0078 ; 0000-0002-5392-8166</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8664185$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8664185$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30869629$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Noriega-Atala, Enrique</creatorcontrib><creatorcontrib>Hein, Paul D.</creatorcontrib><creatorcontrib>Thumsi, Shraddha S.</creatorcontrib><creatorcontrib>Wong, Zechy</creatorcontrib><creatorcontrib>Wang, Xia</creatorcontrib><creatorcontrib>Hendryx, Sean M.</creatorcontrib><creatorcontrib>Morrison, Clayton T.</creatorcontrib><title>Extracting Inter-Sentence Relations for Associating Biological Context with Events in Biomedical Texts</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>We present an analysis of the problem of identifying biological context and associating it with biochemical events described in biomedical texts. This constitutes a non-trivial, inter-sentential relation extraction task. We focus on biological context as descriptions of the species, tissue type, and cell type that are associated with biochemical events. We present a new corpus of open access biomedical texts that have been annotated by biology subject matter experts to highlight context-event relations. Using this corpus, we evaluate several classifiers for context-event association along with a detailed analysis of the impact of a variety of linguistic features on classifier performance. We find that gradient tree boosting performs by far the best, achieving an F1 of 0.865 in a cross-validation study.</description><subject>Bioinformatics</subject><subject>Biological information theory</subject><subject>Classifiers</subject><subject>Context</subject><subject>Context awareness</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>Impact analysis</subject><subject>inter-sentence relation extraction</subject><subject>Knowledge based systems</subject><subject>Linguistics</subject><subject>NLP</subject><subject>Texts</subject><issn>1545-5963</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0UtLAzEQB_Agiu8PIIIsePGyNZPn5mhLfYAgaD2HNJvVyHajydbHtzdrqwdPE5jfDGH-CB0BHgFgdT6bjMcjgkGNiMKMUNhAu8C5LJUSbHN4M15yJegO2kvpBWPCsttGOxRXQgmidlEz_eyjsb3vnoqbrnexfHC5dNYV9641vQ9dKpoQi4uUgvXmB459aMOTt6YtJiHrz7748P1zMX3Ps6nw3SAWrv4Rs9xOB2irMW1yh-u6jx4vp7PJdXl7d3UzubgtLWWqLwmWila1oZgQARIkn1MA7hymYFRTzVWNJcM1refcMomZEZITS2sMzBrL6D46W-19jeFt6VKvFz5Z17amc2GZNAEFlDNFeKan_-hLWMYu_04TJiopCYEqK1gpG0NK0TX6NfqFiV8asB5C0EMIeghBr0PIMyfrzct5vsLfxO_VMzheAe-c-2tXQjCoOP0Gn_SJ_w</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Noriega-Atala, Enrique</creator><creator>Hein, Paul D.</creator><creator>Thumsi, Shraddha S.</creator><creator>Wong, Zechy</creator><creator>Wang, Xia</creator><creator>Hendryx, Sean M.</creator><creator>Morrison, Clayton T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9410-0605</orcidid><orcidid>https://orcid.org/0000-0001-7150-2989</orcidid><orcidid>https://orcid.org/0000-0002-3606-0078</orcidid><orcidid>https://orcid.org/0000-0002-5392-8166</orcidid></search><sort><creationdate>202011</creationdate><title>Extracting Inter-Sentence Relations for Associating Biological Context with Events in Biomedical Texts</title><author>Noriega-Atala, Enrique ; Hein, Paul D. ; Thumsi, Shraddha S. ; Wong, Zechy ; Wang, Xia ; Hendryx, Sean M. ; Morrison, Clayton T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-207938da3022617175b3115ee031a9f8b9d0740d3db5c4704a6752c3d014cac43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bioinformatics</topic><topic>Biological information theory</topic><topic>Classifiers</topic><topic>Context</topic><topic>Context awareness</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>Impact analysis</topic><topic>inter-sentence relation extraction</topic><topic>Knowledge based systems</topic><topic>Linguistics</topic><topic>NLP</topic><topic>Texts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noriega-Atala, Enrique</creatorcontrib><creatorcontrib>Hein, Paul D.</creatorcontrib><creatorcontrib>Thumsi, Shraddha S.</creatorcontrib><creatorcontrib>Wong, Zechy</creatorcontrib><creatorcontrib>Wang, Xia</creatorcontrib><creatorcontrib>Hendryx, Sean M.</creatorcontrib><creatorcontrib>Morrison, Clayton T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Noriega-Atala, Enrique</au><au>Hein, Paul D.</au><au>Thumsi, Shraddha S.</au><au>Wong, Zechy</au><au>Wang, Xia</au><au>Hendryx, Sean M.</au><au>Morrison, Clayton T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extracting Inter-Sentence Relations for Associating Biological Context with Events in Biomedical Texts</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2020-11</date><risdate>2020</risdate><volume>17</volume><issue>6</issue><spage>1895</spage><epage>1906</epage><pages>1895-1906</pages><issn>1545-5963</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>We present an analysis of the problem of identifying biological context and associating it with biochemical events described in biomedical texts. This constitutes a non-trivial, inter-sentential relation extraction task. We focus on biological context as descriptions of the species, tissue type, and cell type that are associated with biochemical events. We present a new corpus of open access biomedical texts that have been annotated by biology subject matter experts to highlight context-event relations. Using this corpus, we evaluate several classifiers for context-event association along with a detailed analysis of the impact of a variety of linguistic features on classifier performance. We find that gradient tree boosting performs by far the best, achieving an F1 of 0.865 in a cross-validation study.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30869629</pmid><doi>10.1109/TCBB.2019.2904231</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9410-0605</orcidid><orcidid>https://orcid.org/0000-0001-7150-2989</orcidid><orcidid>https://orcid.org/0000-0002-3606-0078</orcidid><orcidid>https://orcid.org/0000-0002-5392-8166</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-5963
ispartof IEEE/ACM transactions on computational biology and bioinformatics, 2020-11, Vol.17 (6), p.1895-1906
issn 1545-5963
1557-9964
language eng
recordid cdi_crossref_primary_10_1109_TCBB_2019_2904231
source IEEE Electronic Library (IEL)
subjects Bioinformatics
Biological information theory
Classifiers
Context
Context awareness
Data mining
Feature extraction
Impact analysis
inter-sentence relation extraction
Knowledge based systems
Linguistics
NLP
Texts
title Extracting Inter-Sentence Relations for Associating Biological Context with Events in Biomedical Texts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A27%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extracting%20Inter-Sentence%20Relations%20for%20Associating%20Biological%20Context%20with%20Events%20in%20Biomedical%20Texts&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Noriega-Atala,%20Enrique&rft.date=2020-11&rft.volume=17&rft.issue=6&rft.spage=1895&rft.epage=1906&rft.pages=1895-1906&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2019.2904231&rft_dat=%3Cproquest_RIE%3E2468772218%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468772218&rft_id=info:pmid/30869629&rft_ieee_id=8664185&rfr_iscdi=true