Extracting Inter-Sentence Relations for Associating Biological Context with Events in Biomedical Texts
We present an analysis of the problem of identifying biological context and associating it with biochemical events described in biomedical texts. This constitutes a non-trivial, inter-sentential relation extraction task. We focus on biological context as descriptions of the species, tissue type, and...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on computational biology and bioinformatics 2020-11, Vol.17 (6), p.1895-1906 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1906 |
---|---|
container_issue | 6 |
container_start_page | 1895 |
container_title | IEEE/ACM transactions on computational biology and bioinformatics |
container_volume | 17 |
creator | Noriega-Atala, Enrique Hein, Paul D. Thumsi, Shraddha S. Wong, Zechy Wang, Xia Hendryx, Sean M. Morrison, Clayton T. |
description | We present an analysis of the problem of identifying biological context and associating it with biochemical events described in biomedical texts. This constitutes a non-trivial, inter-sentential relation extraction task. We focus on biological context as descriptions of the species, tissue type, and cell type that are associated with biochemical events. We present a new corpus of open access biomedical texts that have been annotated by biology subject matter experts to highlight context-event relations. Using this corpus, we evaluate several classifiers for context-event association along with a detailed analysis of the impact of a variety of linguistic features on classifier performance. We find that gradient tree boosting performs by far the best, achieving an F1 of 0.865 in a cross-validation study. |
doi_str_mv | 10.1109/TCBB.2019.2904231 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCBB_2019_2904231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8664185</ieee_id><sourcerecordid>2468772218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-207938da3022617175b3115ee031a9f8b9d0740d3db5c4704a6752c3d014cac43</originalsourceid><addsrcrecordid>eNpd0UtLAzEQB_Agiu8PIIIsePGyNZPn5mhLfYAgaD2HNJvVyHajydbHtzdrqwdPE5jfDGH-CB0BHgFgdT6bjMcjgkGNiMKMUNhAu8C5LJUSbHN4M15yJegO2kvpBWPCsttGOxRXQgmidlEz_eyjsb3vnoqbrnexfHC5dNYV9641vQ9dKpoQi4uUgvXmB459aMOTt6YtJiHrz7748P1zMX3Ps6nw3SAWrv4Rs9xOB2irMW1yh-u6jx4vp7PJdXl7d3UzubgtLWWqLwmWila1oZgQARIkn1MA7hymYFRTzVWNJcM1refcMomZEZITS2sMzBrL6D46W-19jeFt6VKvFz5Z17amc2GZNAEFlDNFeKan_-hLWMYu_04TJiopCYEqK1gpG0NK0TX6NfqFiV8asB5C0EMIeghBr0PIMyfrzct5vsLfxO_VMzheAe-c-2tXQjCoOP0Gn_SJ_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468772218</pqid></control><display><type>article</type><title>Extracting Inter-Sentence Relations for Associating Biological Context with Events in Biomedical Texts</title><source>IEEE Electronic Library (IEL)</source><creator>Noriega-Atala, Enrique ; Hein, Paul D. ; Thumsi, Shraddha S. ; Wong, Zechy ; Wang, Xia ; Hendryx, Sean M. ; Morrison, Clayton T.</creator><creatorcontrib>Noriega-Atala, Enrique ; Hein, Paul D. ; Thumsi, Shraddha S. ; Wong, Zechy ; Wang, Xia ; Hendryx, Sean M. ; Morrison, Clayton T.</creatorcontrib><description>We present an analysis of the problem of identifying biological context and associating it with biochemical events described in biomedical texts. This constitutes a non-trivial, inter-sentential relation extraction task. We focus on biological context as descriptions of the species, tissue type, and cell type that are associated with biochemical events. We present a new corpus of open access biomedical texts that have been annotated by biology subject matter experts to highlight context-event relations. Using this corpus, we evaluate several classifiers for context-event association along with a detailed analysis of the impact of a variety of linguistic features on classifier performance. We find that gradient tree boosting performs by far the best, achieving an F1 of 0.865 in a cross-validation study.</description><identifier>ISSN: 1545-5963</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2019.2904231</identifier><identifier>PMID: 30869629</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Bioinformatics ; Biological information theory ; Classifiers ; Context ; Context awareness ; Data mining ; Feature extraction ; Impact analysis ; inter-sentence relation extraction ; Knowledge based systems ; Linguistics ; NLP ; Texts</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2020-11, Vol.17 (6), p.1895-1906</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-207938da3022617175b3115ee031a9f8b9d0740d3db5c4704a6752c3d014cac43</citedby><cites>FETCH-LOGICAL-c349t-207938da3022617175b3115ee031a9f8b9d0740d3db5c4704a6752c3d014cac43</cites><orcidid>0000-0002-9410-0605 ; 0000-0001-7150-2989 ; 0000-0002-3606-0078 ; 0000-0002-5392-8166</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8664185$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8664185$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30869629$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Noriega-Atala, Enrique</creatorcontrib><creatorcontrib>Hein, Paul D.</creatorcontrib><creatorcontrib>Thumsi, Shraddha S.</creatorcontrib><creatorcontrib>Wong, Zechy</creatorcontrib><creatorcontrib>Wang, Xia</creatorcontrib><creatorcontrib>Hendryx, Sean M.</creatorcontrib><creatorcontrib>Morrison, Clayton T.</creatorcontrib><title>Extracting Inter-Sentence Relations for Associating Biological Context with Events in Biomedical Texts</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>We present an analysis of the problem of identifying biological context and associating it with biochemical events described in biomedical texts. This constitutes a non-trivial, inter-sentential relation extraction task. We focus on biological context as descriptions of the species, tissue type, and cell type that are associated with biochemical events. We present a new corpus of open access biomedical texts that have been annotated by biology subject matter experts to highlight context-event relations. Using this corpus, we evaluate several classifiers for context-event association along with a detailed analysis of the impact of a variety of linguistic features on classifier performance. We find that gradient tree boosting performs by far the best, achieving an F1 of 0.865 in a cross-validation study.</description><subject>Bioinformatics</subject><subject>Biological information theory</subject><subject>Classifiers</subject><subject>Context</subject><subject>Context awareness</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>Impact analysis</subject><subject>inter-sentence relation extraction</subject><subject>Knowledge based systems</subject><subject>Linguistics</subject><subject>NLP</subject><subject>Texts</subject><issn>1545-5963</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0UtLAzEQB_Agiu8PIIIsePGyNZPn5mhLfYAgaD2HNJvVyHajydbHtzdrqwdPE5jfDGH-CB0BHgFgdT6bjMcjgkGNiMKMUNhAu8C5LJUSbHN4M15yJegO2kvpBWPCsttGOxRXQgmidlEz_eyjsb3vnoqbrnexfHC5dNYV9641vQ9dKpoQi4uUgvXmB459aMOTt6YtJiHrz7748P1zMX3Ps6nw3SAWrv4Rs9xOB2irMW1yh-u6jx4vp7PJdXl7d3UzubgtLWWqLwmWila1oZgQARIkn1MA7hymYFRTzVWNJcM1refcMomZEZITS2sMzBrL6D46W-19jeFt6VKvFz5Z17amc2GZNAEFlDNFeKan_-hLWMYu_04TJiopCYEqK1gpG0NK0TX6NfqFiV8asB5C0EMIeghBr0PIMyfrzct5vsLfxO_VMzheAe-c-2tXQjCoOP0Gn_SJ_w</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Noriega-Atala, Enrique</creator><creator>Hein, Paul D.</creator><creator>Thumsi, Shraddha S.</creator><creator>Wong, Zechy</creator><creator>Wang, Xia</creator><creator>Hendryx, Sean M.</creator><creator>Morrison, Clayton T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9410-0605</orcidid><orcidid>https://orcid.org/0000-0001-7150-2989</orcidid><orcidid>https://orcid.org/0000-0002-3606-0078</orcidid><orcidid>https://orcid.org/0000-0002-5392-8166</orcidid></search><sort><creationdate>202011</creationdate><title>Extracting Inter-Sentence Relations for Associating Biological Context with Events in Biomedical Texts</title><author>Noriega-Atala, Enrique ; Hein, Paul D. ; Thumsi, Shraddha S. ; Wong, Zechy ; Wang, Xia ; Hendryx, Sean M. ; Morrison, Clayton T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-207938da3022617175b3115ee031a9f8b9d0740d3db5c4704a6752c3d014cac43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bioinformatics</topic><topic>Biological information theory</topic><topic>Classifiers</topic><topic>Context</topic><topic>Context awareness</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>Impact analysis</topic><topic>inter-sentence relation extraction</topic><topic>Knowledge based systems</topic><topic>Linguistics</topic><topic>NLP</topic><topic>Texts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noriega-Atala, Enrique</creatorcontrib><creatorcontrib>Hein, Paul D.</creatorcontrib><creatorcontrib>Thumsi, Shraddha S.</creatorcontrib><creatorcontrib>Wong, Zechy</creatorcontrib><creatorcontrib>Wang, Xia</creatorcontrib><creatorcontrib>Hendryx, Sean M.</creatorcontrib><creatorcontrib>Morrison, Clayton T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Noriega-Atala, Enrique</au><au>Hein, Paul D.</au><au>Thumsi, Shraddha S.</au><au>Wong, Zechy</au><au>Wang, Xia</au><au>Hendryx, Sean M.</au><au>Morrison, Clayton T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extracting Inter-Sentence Relations for Associating Biological Context with Events in Biomedical Texts</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2020-11</date><risdate>2020</risdate><volume>17</volume><issue>6</issue><spage>1895</spage><epage>1906</epage><pages>1895-1906</pages><issn>1545-5963</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>We present an analysis of the problem of identifying biological context and associating it with biochemical events described in biomedical texts. This constitutes a non-trivial, inter-sentential relation extraction task. We focus on biological context as descriptions of the species, tissue type, and cell type that are associated with biochemical events. We present a new corpus of open access biomedical texts that have been annotated by biology subject matter experts to highlight context-event relations. Using this corpus, we evaluate several classifiers for context-event association along with a detailed analysis of the impact of a variety of linguistic features on classifier performance. We find that gradient tree boosting performs by far the best, achieving an F1 of 0.865 in a cross-validation study.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30869629</pmid><doi>10.1109/TCBB.2019.2904231</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9410-0605</orcidid><orcidid>https://orcid.org/0000-0001-7150-2989</orcidid><orcidid>https://orcid.org/0000-0002-3606-0078</orcidid><orcidid>https://orcid.org/0000-0002-5392-8166</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-5963 |
ispartof | IEEE/ACM transactions on computational biology and bioinformatics, 2020-11, Vol.17 (6), p.1895-1906 |
issn | 1545-5963 1557-9964 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCBB_2019_2904231 |
source | IEEE Electronic Library (IEL) |
subjects | Bioinformatics Biological information theory Classifiers Context Context awareness Data mining Feature extraction Impact analysis inter-sentence relation extraction Knowledge based systems Linguistics NLP Texts |
title | Extracting Inter-Sentence Relations for Associating Biological Context with Events in Biomedical Texts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A27%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extracting%20Inter-Sentence%20Relations%20for%20Associating%20Biological%20Context%20with%20Events%20in%20Biomedical%20Texts&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Noriega-Atala,%20Enrique&rft.date=2020-11&rft.volume=17&rft.issue=6&rft.spage=1895&rft.epage=1906&rft.pages=1895-1906&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2019.2904231&rft_dat=%3Cproquest_RIE%3E2468772218%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468772218&rft_id=info:pmid/30869629&rft_ieee_id=8664185&rfr_iscdi=true |