Optimal Bayesian Filtering for Biomarker Discovery: Performance and Robustness
Optimal Bayesian feature filtering (OBF) is a fast and memory-efficient algorithm that optimally identifies markers with distributional differences between treatment groups under Gaussian models. Here, we study the performance and robustness of OBF for biomarker discovery. Our contributions are twof...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on computational biology and bioinformatics 2020-01, Vol.17 (1), p.250-263 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 263 |
---|---|
container_issue | 1 |
container_start_page | 250 |
container_title | IEEE/ACM transactions on computational biology and bioinformatics |
container_volume | 17 |
creator | Foroughi pour, Ali Dalton, Lori A. |
description | Optimal Bayesian feature filtering (OBF) is a fast and memory-efficient algorithm that optimally identifies markers with distributional differences between treatment groups under Gaussian models. Here, we study the performance and robustness of OBF for biomarker discovery. Our contributions are twofold: (1) we examine how OBF performs on data that violates modeling assumptions, and (2) we provide guidelines on how to set input parameters for robust performance. Contribution (1) addresses an important, relevant, and commonplace problem in computational biology, where it is often impossible to validate an algorithm's core assumptions. To accomplish both tasks, we present a battery of simulations that implement OBF with different inputs and challenge each assumption made by OBF. In particular, we examine the robustness of OBF with respect to incorrect input parameters, false independence, imbalanced sample size, and we address the Gaussianity assumption by considering performance on an extensive family of non-Gaussian distributions. We address advantages and disadvantages between different priors and optimization criteria throughout. Finally, we evaluate the utility of OBF in biomarker discovery using acute myeloid leukemia (AML) and colon cancer microarray datasets, and show that OBF is successful at identifying well-known biomarkers for these diseases that rank low under moderated t-test. |
doi_str_mv | 10.1109/TCBB.2018.2858814 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCBB_2018_2858814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8417895</ieee_id><sourcerecordid>2076234815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-3273b6c108b7429a1b1336275f4b0a4e3c5c4ab009f4ee4c5bee29a5646991963</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRrFZ_gAgS8OIldT-TXW-mWhWKFannZZNOJDXJ1t1E6L93S2sPnmZgnneYeRC6IHhECFa383GWjSgmckSlkJLwA3RChEhjpRJ-uOm5iIVK2ACder_EmHKF-TEaMIw5ToQ8Qa-zVVc1po4yswZfmTaaVHUHrmo_o9K6KKtsY9wXuOih8oX9Abe-i97AhVlj2gIi0y6id5v3vmvB-zN0VJraw_muDtHH5HE-fo6ns6eX8f00LpiiXcxoyvKkIFjmKafKkJwwltBUlDzHhgMrRMFNjrEqOQAvRA4QMJHwRCkSHhqim-3elbPfPfhON-E8qGvTgu29pjhNKOOSiIBe_0OXtndtuE5TJihRAcKBIluqcNZ7B6VeueDFrTXBeiNbb2TrjWy9kx0yV7vNfd7AYp_4sxuAyy1QAcB-LDlJpRLsFwcDgXo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352198150</pqid></control><display><type>article</type><title>Optimal Bayesian Filtering for Biomarker Discovery: Performance and Robustness</title><source>IEEE Electronic Library (IEL)</source><creator>Foroughi pour, Ali ; Dalton, Lori A.</creator><creatorcontrib>Foroughi pour, Ali ; Dalton, Lori A.</creatorcontrib><description>Optimal Bayesian feature filtering (OBF) is a fast and memory-efficient algorithm that optimally identifies markers with distributional differences between treatment groups under Gaussian models. Here, we study the performance and robustness of OBF for biomarker discovery. Our contributions are twofold: (1) we examine how OBF performs on data that violates modeling assumptions, and (2) we provide guidelines on how to set input parameters for robust performance. Contribution (1) addresses an important, relevant, and commonplace problem in computational biology, where it is often impossible to validate an algorithm's core assumptions. To accomplish both tasks, we present a battery of simulations that implement OBF with different inputs and challenge each assumption made by OBF. In particular, we examine the robustness of OBF with respect to incorrect input parameters, false independence, imbalanced sample size, and we address the Gaussianity assumption by considering performance on an extensive family of non-Gaussian distributions. We address advantages and disadvantages between different priors and optimization criteria throughout. Finally, we evaluate the utility of OBF in biomarker discovery using acute myeloid leukemia (AML) and colon cancer microarray datasets, and show that OBF is successful at identifying well-known biomarkers for these diseases that rank low under moderated t-test.</description><identifier>ISSN: 1545-5963</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2018.2858814</identifier><identifier>PMID: 30040658</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Acute myeloid leukemia ; Algorithms ; Bayes methods ; Bayes Theorem ; Bayesian analysis ; Bayesian modeling ; Bayesian variable selection ; Bioinformatics ; Biological system modeling ; biomarker discovery ; Biomarkers ; Colon ; Colon cancer ; Computational Biology - methods ; Computational modeling ; Computer applications ; Computer simulation ; Data models ; Databases, Factual ; Feature extraction ; feature selection ; Filtration ; Humans ; Leukemia ; Mathematical models ; Myeloid leukemia ; Neoplasms - diagnosis ; Neoplasms - metabolism ; Optimization ; Parameter robustness ; Robustness</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2020-01, Vol.17 (1), p.250-263</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-3273b6c108b7429a1b1336275f4b0a4e3c5c4ab009f4ee4c5bee29a5646991963</citedby><cites>FETCH-LOGICAL-c392t-3273b6c108b7429a1b1336275f4b0a4e3c5c4ab009f4ee4c5bee29a5646991963</cites><orcidid>0000-0001-8715-5723 ; 0000-0002-3547-0796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8417895$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8417895$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30040658$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Foroughi pour, Ali</creatorcontrib><creatorcontrib>Dalton, Lori A.</creatorcontrib><title>Optimal Bayesian Filtering for Biomarker Discovery: Performance and Robustness</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>Optimal Bayesian feature filtering (OBF) is a fast and memory-efficient algorithm that optimally identifies markers with distributional differences between treatment groups under Gaussian models. Here, we study the performance and robustness of OBF for biomarker discovery. Our contributions are twofold: (1) we examine how OBF performs on data that violates modeling assumptions, and (2) we provide guidelines on how to set input parameters for robust performance. Contribution (1) addresses an important, relevant, and commonplace problem in computational biology, where it is often impossible to validate an algorithm's core assumptions. To accomplish both tasks, we present a battery of simulations that implement OBF with different inputs and challenge each assumption made by OBF. In particular, we examine the robustness of OBF with respect to incorrect input parameters, false independence, imbalanced sample size, and we address the Gaussianity assumption by considering performance on an extensive family of non-Gaussian distributions. We address advantages and disadvantages between different priors and optimization criteria throughout. Finally, we evaluate the utility of OBF in biomarker discovery using acute myeloid leukemia (AML) and colon cancer microarray datasets, and show that OBF is successful at identifying well-known biomarkers for these diseases that rank low under moderated t-test.</description><subject>Acute myeloid leukemia</subject><subject>Algorithms</subject><subject>Bayes methods</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bayesian modeling</subject><subject>Bayesian variable selection</subject><subject>Bioinformatics</subject><subject>Biological system modeling</subject><subject>biomarker discovery</subject><subject>Biomarkers</subject><subject>Colon</subject><subject>Colon cancer</subject><subject>Computational Biology - methods</subject><subject>Computational modeling</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Data models</subject><subject>Databases, Factual</subject><subject>Feature extraction</subject><subject>feature selection</subject><subject>Filtration</subject><subject>Humans</subject><subject>Leukemia</subject><subject>Mathematical models</subject><subject>Myeloid leukemia</subject><subject>Neoplasms - diagnosis</subject><subject>Neoplasms - metabolism</subject><subject>Optimization</subject><subject>Parameter robustness</subject><subject>Robustness</subject><issn>1545-5963</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE1Lw0AQhhdRrFZ_gAgS8OIldT-TXW-mWhWKFannZZNOJDXJ1t1E6L93S2sPnmZgnneYeRC6IHhECFa383GWjSgmckSlkJLwA3RChEhjpRJ-uOm5iIVK2ACder_EmHKF-TEaMIw5ToQ8Qa-zVVc1po4yswZfmTaaVHUHrmo_o9K6KKtsY9wXuOih8oX9Abe-i97AhVlj2gIi0y6id5v3vmvB-zN0VJraw_muDtHH5HE-fo6ns6eX8f00LpiiXcxoyvKkIFjmKafKkJwwltBUlDzHhgMrRMFNjrEqOQAvRA4QMJHwRCkSHhqim-3elbPfPfhON-E8qGvTgu29pjhNKOOSiIBe_0OXtndtuE5TJihRAcKBIluqcNZ7B6VeueDFrTXBeiNbb2TrjWy9kx0yV7vNfd7AYp_4sxuAyy1QAcB-LDlJpRLsFwcDgXo</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Foroughi pour, Ali</creator><creator>Dalton, Lori A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8715-5723</orcidid><orcidid>https://orcid.org/0000-0002-3547-0796</orcidid></search><sort><creationdate>202001</creationdate><title>Optimal Bayesian Filtering for Biomarker Discovery: Performance and Robustness</title><author>Foroughi pour, Ali ; Dalton, Lori A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-3273b6c108b7429a1b1336275f4b0a4e3c5c4ab009f4ee4c5bee29a5646991963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acute myeloid leukemia</topic><topic>Algorithms</topic><topic>Bayes methods</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bayesian modeling</topic><topic>Bayesian variable selection</topic><topic>Bioinformatics</topic><topic>Biological system modeling</topic><topic>biomarker discovery</topic><topic>Biomarkers</topic><topic>Colon</topic><topic>Colon cancer</topic><topic>Computational Biology - methods</topic><topic>Computational modeling</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Data models</topic><topic>Databases, Factual</topic><topic>Feature extraction</topic><topic>feature selection</topic><topic>Filtration</topic><topic>Humans</topic><topic>Leukemia</topic><topic>Mathematical models</topic><topic>Myeloid leukemia</topic><topic>Neoplasms - diagnosis</topic><topic>Neoplasms - metabolism</topic><topic>Optimization</topic><topic>Parameter robustness</topic><topic>Robustness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foroughi pour, Ali</creatorcontrib><creatorcontrib>Dalton, Lori A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Foroughi pour, Ali</au><au>Dalton, Lori A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Bayesian Filtering for Biomarker Discovery: Performance and Robustness</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2020-01</date><risdate>2020</risdate><volume>17</volume><issue>1</issue><spage>250</spage><epage>263</epage><pages>250-263</pages><issn>1545-5963</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>Optimal Bayesian feature filtering (OBF) is a fast and memory-efficient algorithm that optimally identifies markers with distributional differences between treatment groups under Gaussian models. Here, we study the performance and robustness of OBF for biomarker discovery. Our contributions are twofold: (1) we examine how OBF performs on data that violates modeling assumptions, and (2) we provide guidelines on how to set input parameters for robust performance. Contribution (1) addresses an important, relevant, and commonplace problem in computational biology, where it is often impossible to validate an algorithm's core assumptions. To accomplish both tasks, we present a battery of simulations that implement OBF with different inputs and challenge each assumption made by OBF. In particular, we examine the robustness of OBF with respect to incorrect input parameters, false independence, imbalanced sample size, and we address the Gaussianity assumption by considering performance on an extensive family of non-Gaussian distributions. We address advantages and disadvantages between different priors and optimization criteria throughout. Finally, we evaluate the utility of OBF in biomarker discovery using acute myeloid leukemia (AML) and colon cancer microarray datasets, and show that OBF is successful at identifying well-known biomarkers for these diseases that rank low under moderated t-test.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30040658</pmid><doi>10.1109/TCBB.2018.2858814</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8715-5723</orcidid><orcidid>https://orcid.org/0000-0002-3547-0796</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-5963 |
ispartof | IEEE/ACM transactions on computational biology and bioinformatics, 2020-01, Vol.17 (1), p.250-263 |
issn | 1545-5963 1557-9964 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCBB_2018_2858814 |
source | IEEE Electronic Library (IEL) |
subjects | Acute myeloid leukemia Algorithms Bayes methods Bayes Theorem Bayesian analysis Bayesian modeling Bayesian variable selection Bioinformatics Biological system modeling biomarker discovery Biomarkers Colon Colon cancer Computational Biology - methods Computational modeling Computer applications Computer simulation Data models Databases, Factual Feature extraction feature selection Filtration Humans Leukemia Mathematical models Myeloid leukemia Neoplasms - diagnosis Neoplasms - metabolism Optimization Parameter robustness Robustness |
title | Optimal Bayesian Filtering for Biomarker Discovery: Performance and Robustness |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A55%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Bayesian%20Filtering%20for%20Biomarker%20Discovery:%20Performance%20and%20Robustness&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Foroughi%20pour,%20Ali&rft.date=2020-01&rft.volume=17&rft.issue=1&rft.spage=250&rft.epage=263&rft.pages=250-263&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2018.2858814&rft_dat=%3Cproquest_RIE%3E2076234815%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352198150&rft_id=info:pmid/30040658&rft_ieee_id=8417895&rfr_iscdi=true |