Are My EHRs Private Enough? Event-Level Privacy Protection

Privacy is a major concern in sharing human subject data to researchers for secondary analyses. A simple binary consent (opt-in or not) may significantly reduce the amount of sharable data, since many patients might only be concerned about a few sensitive medical conditions rather than the entire me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on computational biology and bioinformatics 2019-01, Vol.16 (1), p.103-112
Hauptverfasser: Mao, Chengsheng, Zhao, Yuan, Sun, Mengxin, Luo, Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 112
container_issue 1
container_start_page 103
container_title IEEE/ACM transactions on computational biology and bioinformatics
container_volume 16
creator Mao, Chengsheng
Zhao, Yuan
Sun, Mengxin
Luo, Yuan
description Privacy is a major concern in sharing human subject data to researchers for secondary analyses. A simple binary consent (opt-in or not) may significantly reduce the amount of sharable data, since many patients might only be concerned about a few sensitive medical conditions rather than the entire medical records. We propose event-level privacy protection, and develop a feature ablation method to protect event-level privacy in electronic medical records. Using a list of 13 sensitive diagnoses, we evaluate the feasibility and the efficacy of the proposed method. As feature ablation progresses, the identifiability of a sensitive medical condition decreases with varying speeds on different diseases. We find that these sensitive diagnoses can be divided into three categories: (1) five diseases have fast declining identifiability (AUC below 0.6 with less than 400 features excluded); (2) seven diseases with progressively declining identifiability (AUC below 0.7 with between 200 and 700 features excluded); and (3) one disease with slowly declining identifiability (AUC above 0.7 with 1,000 features excluded). The fact that the majority (12 out of 13) of the sensitive diseases fall into the first two categories suggests the potential of the proposed feature ablation method as a solution for event-level record privacy protection.
doi_str_mv 10.1109/TCBB.2018.2850037
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCBB_2018_2850037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8395018</ieee_id><sourcerecordid>2177336879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-5e8d0b705a5e4741a5d090c67c4ac05d7c2e9eae35eac5db7c8129f5bdd4600c3</originalsourceid><addsrcrecordid>eNpdkU9LI0EQxRtR1FU_gAgy4GUvE6v_TU97UDRkVyGiiJ6bTk9FRybT2j0TyLffDolh9VQF71ePejxCjikMKAV9_jy8uRkwoOWAlRKAqy2yT6VUudaF2F7uQuZSF3yP_IrxHYAJDWKX7DGttRCl2icX1wGz-0U2un2K2WOo57bDbNT6_vXtKhvNse3yMc6xWWlukabv0HW1bw_JztQ2EY_W84C8_Bk9D2_z8cPfu-H1OHdCqC6XWFYwUSCtRKEEtbICDa5QTlgHslKOoUaLXKJ1spooV1Kmp3JSVaIAcPyAXK58P_rJDCuXfgq2MR-hntmwMN7W5rvS1m_m1c9NIQTlmiWD32uD4D97jJ2Z1dFh09gWfR8Ng6LkAjjIhJ79QN99H9oUzzCqFOdFqXSi6IpywccYcLp5hoJZNmOWzZhlM2bdTLo5_T_F5uKrigScrIAaETdyybVMNvwfnrqRgw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2177336879</pqid></control><display><type>article</type><title>Are My EHRs Private Enough? Event-Level Privacy Protection</title><source>IEEE Electronic Library (IEL)</source><creator>Mao, Chengsheng ; Zhao, Yuan ; Sun, Mengxin ; Luo, Yuan</creator><creatorcontrib>Mao, Chengsheng ; Zhao, Yuan ; Sun, Mengxin ; Luo, Yuan</creatorcontrib><description>Privacy is a major concern in sharing human subject data to researchers for secondary analyses. A simple binary consent (opt-in or not) may significantly reduce the amount of sharable data, since many patients might only be concerned about a few sensitive medical conditions rather than the entire medical records. We propose event-level privacy protection, and develop a feature ablation method to protect event-level privacy in electronic medical records. Using a list of 13 sensitive diagnoses, we evaluate the feasibility and the efficacy of the proposed method. As feature ablation progresses, the identifiability of a sensitive medical condition decreases with varying speeds on different diseases. We find that these sensitive diagnoses can be divided into three categories: (1) five diseases have fast declining identifiability (AUC below 0.6 with less than 400 features excluded); (2) seven diseases with progressively declining identifiability (AUC below 0.7 with between 200 and 700 features excluded); and (3) one disease with slowly declining identifiability (AUC above 0.7 with 1,000 features excluded). The fact that the majority (12 out of 13) of the sensitive diseases fall into the first two categories suggests the potential of the proposed feature ablation method as a solution for event-level record privacy protection.</description><identifier>ISSN: 1545-5963</identifier><identifier>ISSN: 1557-9964</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2018.2850037</identifier><identifier>PMID: 29994487</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Ablation ; Computer Security - standards ; Confidentiality ; Data privacy ; data sharing ; Databases, Factual ; Diseases ; Drugs ; Electronic Health Records ; Electronic medical records ; Feasibility studies ; feature ablation ; Healthcare privacy ; Humans ; Information Dissemination ; Machine Learning ; Medical diagnostic imaging ; Medical records ; Privacy ; Task analysis</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2019-01, Vol.16 (1), p.103-112</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-5e8d0b705a5e4741a5d090c67c4ac05d7c2e9eae35eac5db7c8129f5bdd4600c3</citedby><cites>FETCH-LOGICAL-c447t-5e8d0b705a5e4741a5d090c67c4ac05d7c2e9eae35eac5db7c8129f5bdd4600c3</cites><orcidid>0000-0002-1515-9626 ; 0000-0003-0195-7456</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8395018$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8395018$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29994487$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mao, Chengsheng</creatorcontrib><creatorcontrib>Zhao, Yuan</creatorcontrib><creatorcontrib>Sun, Mengxin</creatorcontrib><creatorcontrib>Luo, Yuan</creatorcontrib><title>Are My EHRs Private Enough? Event-Level Privacy Protection</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>Privacy is a major concern in sharing human subject data to researchers for secondary analyses. A simple binary consent (opt-in or not) may significantly reduce the amount of sharable data, since many patients might only be concerned about a few sensitive medical conditions rather than the entire medical records. We propose event-level privacy protection, and develop a feature ablation method to protect event-level privacy in electronic medical records. Using a list of 13 sensitive diagnoses, we evaluate the feasibility and the efficacy of the proposed method. As feature ablation progresses, the identifiability of a sensitive medical condition decreases with varying speeds on different diseases. We find that these sensitive diagnoses can be divided into three categories: (1) five diseases have fast declining identifiability (AUC below 0.6 with less than 400 features excluded); (2) seven diseases with progressively declining identifiability (AUC below 0.7 with between 200 and 700 features excluded); and (3) one disease with slowly declining identifiability (AUC above 0.7 with 1,000 features excluded). The fact that the majority (12 out of 13) of the sensitive diseases fall into the first two categories suggests the potential of the proposed feature ablation method as a solution for event-level record privacy protection.</description><subject>Ablation</subject><subject>Computer Security - standards</subject><subject>Confidentiality</subject><subject>Data privacy</subject><subject>data sharing</subject><subject>Databases, Factual</subject><subject>Diseases</subject><subject>Drugs</subject><subject>Electronic Health Records</subject><subject>Electronic medical records</subject><subject>Feasibility studies</subject><subject>feature ablation</subject><subject>Healthcare privacy</subject><subject>Humans</subject><subject>Information Dissemination</subject><subject>Machine Learning</subject><subject>Medical diagnostic imaging</subject><subject>Medical records</subject><subject>Privacy</subject><subject>Task analysis</subject><issn>1545-5963</issn><issn>1557-9964</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkU9LI0EQxRtR1FU_gAgy4GUvE6v_TU97UDRkVyGiiJ6bTk9FRybT2j0TyLffDolh9VQF71ePejxCjikMKAV9_jy8uRkwoOWAlRKAqy2yT6VUudaF2F7uQuZSF3yP_IrxHYAJDWKX7DGttRCl2icX1wGz-0U2un2K2WOo57bDbNT6_vXtKhvNse3yMc6xWWlukabv0HW1bw_JztQ2EY_W84C8_Bk9D2_z8cPfu-H1OHdCqC6XWFYwUSCtRKEEtbICDa5QTlgHslKOoUaLXKJ1spooV1Kmp3JSVaIAcPyAXK58P_rJDCuXfgq2MR-hntmwMN7W5rvS1m_m1c9NIQTlmiWD32uD4D97jJ2Z1dFh09gWfR8Ng6LkAjjIhJ79QN99H9oUzzCqFOdFqXSi6IpywccYcLp5hoJZNmOWzZhlM2bdTLo5_T_F5uKrigScrIAaETdyybVMNvwfnrqRgw</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Mao, Chengsheng</creator><creator>Zhao, Yuan</creator><creator>Sun, Mengxin</creator><creator>Luo, Yuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1515-9626</orcidid><orcidid>https://orcid.org/0000-0003-0195-7456</orcidid></search><sort><creationdate>20190101</creationdate><title>Are My EHRs Private Enough? Event-Level Privacy Protection</title><author>Mao, Chengsheng ; Zhao, Yuan ; Sun, Mengxin ; Luo, Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-5e8d0b705a5e4741a5d090c67c4ac05d7c2e9eae35eac5db7c8129f5bdd4600c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ablation</topic><topic>Computer Security - standards</topic><topic>Confidentiality</topic><topic>Data privacy</topic><topic>data sharing</topic><topic>Databases, Factual</topic><topic>Diseases</topic><topic>Drugs</topic><topic>Electronic Health Records</topic><topic>Electronic medical records</topic><topic>Feasibility studies</topic><topic>feature ablation</topic><topic>Healthcare privacy</topic><topic>Humans</topic><topic>Information Dissemination</topic><topic>Machine Learning</topic><topic>Medical diagnostic imaging</topic><topic>Medical records</topic><topic>Privacy</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, Chengsheng</creatorcontrib><creatorcontrib>Zhao, Yuan</creatorcontrib><creatorcontrib>Sun, Mengxin</creatorcontrib><creatorcontrib>Luo, Yuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mao, Chengsheng</au><au>Zhao, Yuan</au><au>Sun, Mengxin</au><au>Luo, Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Are My EHRs Private Enough? Event-Level Privacy Protection</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>16</volume><issue>1</issue><spage>103</spage><epage>112</epage><pages>103-112</pages><issn>1545-5963</issn><issn>1557-9964</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>Privacy is a major concern in sharing human subject data to researchers for secondary analyses. A simple binary consent (opt-in or not) may significantly reduce the amount of sharable data, since many patients might only be concerned about a few sensitive medical conditions rather than the entire medical records. We propose event-level privacy protection, and develop a feature ablation method to protect event-level privacy in electronic medical records. Using a list of 13 sensitive diagnoses, we evaluate the feasibility and the efficacy of the proposed method. As feature ablation progresses, the identifiability of a sensitive medical condition decreases with varying speeds on different diseases. We find that these sensitive diagnoses can be divided into three categories: (1) five diseases have fast declining identifiability (AUC below 0.6 with less than 400 features excluded); (2) seven diseases with progressively declining identifiability (AUC below 0.7 with between 200 and 700 features excluded); and (3) one disease with slowly declining identifiability (AUC above 0.7 with 1,000 features excluded). The fact that the majority (12 out of 13) of the sensitive diseases fall into the first two categories suggests the potential of the proposed feature ablation method as a solution for event-level record privacy protection.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29994487</pmid><doi>10.1109/TCBB.2018.2850037</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1515-9626</orcidid><orcidid>https://orcid.org/0000-0003-0195-7456</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-5963
ispartof IEEE/ACM transactions on computational biology and bioinformatics, 2019-01, Vol.16 (1), p.103-112
issn 1545-5963
1557-9964
1557-9964
language eng
recordid cdi_crossref_primary_10_1109_TCBB_2018_2850037
source IEEE Electronic Library (IEL)
subjects Ablation
Computer Security - standards
Confidentiality
Data privacy
data sharing
Databases, Factual
Diseases
Drugs
Electronic Health Records
Electronic medical records
Feasibility studies
feature ablation
Healthcare privacy
Humans
Information Dissemination
Machine Learning
Medical diagnostic imaging
Medical records
Privacy
Task analysis
title Are My EHRs Private Enough? Event-Level Privacy Protection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T03%3A48%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Are%20My%20EHRs%20Private%20Enough?%20Event-Level%20Privacy%20Protection&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Mao,%20Chengsheng&rft.date=2019-01-01&rft.volume=16&rft.issue=1&rft.spage=103&rft.epage=112&rft.pages=103-112&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2018.2850037&rft_dat=%3Cproquest_RIE%3E2177336879%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2177336879&rft_id=info:pmid/29994487&rft_ieee_id=8395018&rfr_iscdi=true