Benchmark heat transfer data for microstructured surfaces for immersion-cooled microelectronics

Pool boiling from a surface featuring micropyramidal reentrant cavities (mouth size 40 /spl mu/m) etched in silicon, bonded to a glass substrate, was studied. All experiments were conducted in the dielectric fluid FC-72 at 1 atm. The heat sink is designed to eliminate spreading through the substrate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on components and packaging technologies 2006-03, Vol.29 (1), p.89-97
Hauptverfasser: Nimkar, N.D., Bhavnani, S.H., Jaeger, R.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 97
container_issue 1
container_start_page 89
container_title IEEE transactions on components and packaging technologies
container_volume 29
creator Nimkar, N.D.
Bhavnani, S.H.
Jaeger, R.C.
description Pool boiling from a surface featuring micropyramidal reentrant cavities (mouth size 40 /spl mu/m) etched in silicon, bonded to a glass substrate, was studied. All experiments were conducted in the dielectric fluid FC-72 at 1 atm. The heat sink is designed to eliminate spreading through the substrate, and back heat loss. Experimentation showed that the critical heat flux was 12.8 W/cm/sup 2/. A high speed camera (400 frames/s) was used to record and quantify the effect of heat flux on departure diameter and bubble emission frequency. Both departure diameter and frequency showed an increasing trend with heat flux. Comparisons with existing literature are also presented.
doi_str_mv 10.1109/TCAPT.2005.850536
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCAPT_2005_850536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1599497</ieee_id><sourcerecordid>10_1109_TCAPT_2005_850536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-ac6ca0749a1d75a80c18e57996a4530b9ef3debb798658c5103fa86b9e05cb513</originalsourceid><addsrcrecordid>eNpFkM9OwzAMxiMEEmPwAIhLX6DDaeomOY6Jf9IkOIxzlKaOVlhblKQH3p52Q-Jky9_3WfaPsVsOK85B3-826_fdqgDAlUJAUZ2xBUeUudayOJ_7gudCCH7JrmL8BOClKvWCmQfq3b6z4Svbk01ZCraPnkLW2GQzP4Ssa10YYgqjS2OgJotj8NZRPIpt11GI7dDnbhgOk3p004FcCkPfunjNLrw9RLr5q0v28fS427zk27fn1816m7uiwpRbVzkLstSWNxKtAscVodS6siUKqDV50VBdS60qVA45CG9VNc0BXY1cLBk_7Z2PjYG8-Q7t9NaP4WBmQuZIyMyEzInQlLk7ZVoi-vej1qWW4hc_HWUL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Benchmark heat transfer data for microstructured surfaces for immersion-cooled microelectronics</title><source>IEEE Electronic Library (IEL)</source><creator>Nimkar, N.D. ; Bhavnani, S.H. ; Jaeger, R.C.</creator><creatorcontrib>Nimkar, N.D. ; Bhavnani, S.H. ; Jaeger, R.C.</creatorcontrib><description>Pool boiling from a surface featuring micropyramidal reentrant cavities (mouth size 40 /spl mu/m) etched in silicon, bonded to a glass substrate, was studied. All experiments were conducted in the dielectric fluid FC-72 at 1 atm. The heat sink is designed to eliminate spreading through the substrate, and back heat loss. Experimentation showed that the critical heat flux was 12.8 W/cm/sup 2/. A high speed camera (400 frames/s) was used to record and quantify the effect of heat flux on departure diameter and bubble emission frequency. Both departure diameter and frequency showed an increasing trend with heat flux. Comparisons with existing literature are also presented.</description><identifier>ISSN: 1521-3331</identifier><identifier>EISSN: 1557-9972</identifier><identifier>DOI: 10.1109/TCAPT.2005.850536</identifier><identifier>CODEN: ITCPFB</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bonding ; Bubble emission frequency ; departure diameter ; Dielectric substrates ; Etching ; Frequency ; Heat sinks ; Heat transfer ; Immersion cooling ; Microelectronics ; Mouth ; pool boiling ; reentrant cavities ; Silicon ; thermal management of electronics</subject><ispartof>IEEE transactions on components and packaging technologies, 2006-03, Vol.29 (1), p.89-97</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-ac6ca0749a1d75a80c18e57996a4530b9ef3debb798658c5103fa86b9e05cb513</citedby><cites>FETCH-LOGICAL-c265t-ac6ca0749a1d75a80c18e57996a4530b9ef3debb798658c5103fa86b9e05cb513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1599497$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1599497$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nimkar, N.D.</creatorcontrib><creatorcontrib>Bhavnani, S.H.</creatorcontrib><creatorcontrib>Jaeger, R.C.</creatorcontrib><title>Benchmark heat transfer data for microstructured surfaces for immersion-cooled microelectronics</title><title>IEEE transactions on components and packaging technologies</title><addtitle>TCAPT</addtitle><description>Pool boiling from a surface featuring micropyramidal reentrant cavities (mouth size 40 /spl mu/m) etched in silicon, bonded to a glass substrate, was studied. All experiments were conducted in the dielectric fluid FC-72 at 1 atm. The heat sink is designed to eliminate spreading through the substrate, and back heat loss. Experimentation showed that the critical heat flux was 12.8 W/cm/sup 2/. A high speed camera (400 frames/s) was used to record and quantify the effect of heat flux on departure diameter and bubble emission frequency. Both departure diameter and frequency showed an increasing trend with heat flux. Comparisons with existing literature are also presented.</description><subject>Bonding</subject><subject>Bubble emission frequency</subject><subject>departure diameter</subject><subject>Dielectric substrates</subject><subject>Etching</subject><subject>Frequency</subject><subject>Heat sinks</subject><subject>Heat transfer</subject><subject>Immersion cooling</subject><subject>Microelectronics</subject><subject>Mouth</subject><subject>pool boiling</subject><subject>reentrant cavities</subject><subject>Silicon</subject><subject>thermal management of electronics</subject><issn>1521-3331</issn><issn>1557-9972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkM9OwzAMxiMEEmPwAIhLX6DDaeomOY6Jf9IkOIxzlKaOVlhblKQH3p52Q-Jky9_3WfaPsVsOK85B3-826_fdqgDAlUJAUZ2xBUeUudayOJ_7gudCCH7JrmL8BOClKvWCmQfq3b6z4Svbk01ZCraPnkLW2GQzP4Ssa10YYgqjS2OgJotj8NZRPIpt11GI7dDnbhgOk3p004FcCkPfunjNLrw9RLr5q0v28fS427zk27fn1816m7uiwpRbVzkLstSWNxKtAscVodS6siUKqDV50VBdS60qVA45CG9VNc0BXY1cLBk_7Z2PjYG8-Q7t9NaP4WBmQuZIyMyEzInQlLk7ZVoi-vej1qWW4hc_HWUL</recordid><startdate>200603</startdate><enddate>200603</enddate><creator>Nimkar, N.D.</creator><creator>Bhavnani, S.H.</creator><creator>Jaeger, R.C.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200603</creationdate><title>Benchmark heat transfer data for microstructured surfaces for immersion-cooled microelectronics</title><author>Nimkar, N.D. ; Bhavnani, S.H. ; Jaeger, R.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-ac6ca0749a1d75a80c18e57996a4530b9ef3debb798658c5103fa86b9e05cb513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Bonding</topic><topic>Bubble emission frequency</topic><topic>departure diameter</topic><topic>Dielectric substrates</topic><topic>Etching</topic><topic>Frequency</topic><topic>Heat sinks</topic><topic>Heat transfer</topic><topic>Immersion cooling</topic><topic>Microelectronics</topic><topic>Mouth</topic><topic>pool boiling</topic><topic>reentrant cavities</topic><topic>Silicon</topic><topic>thermal management of electronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nimkar, N.D.</creatorcontrib><creatorcontrib>Bhavnani, S.H.</creatorcontrib><creatorcontrib>Jaeger, R.C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on components and packaging technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nimkar, N.D.</au><au>Bhavnani, S.H.</au><au>Jaeger, R.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benchmark heat transfer data for microstructured surfaces for immersion-cooled microelectronics</atitle><jtitle>IEEE transactions on components and packaging technologies</jtitle><stitle>TCAPT</stitle><date>2006-03</date><risdate>2006</risdate><volume>29</volume><issue>1</issue><spage>89</spage><epage>97</epage><pages>89-97</pages><issn>1521-3331</issn><eissn>1557-9972</eissn><coden>ITCPFB</coden><abstract>Pool boiling from a surface featuring micropyramidal reentrant cavities (mouth size 40 /spl mu/m) etched in silicon, bonded to a glass substrate, was studied. All experiments were conducted in the dielectric fluid FC-72 at 1 atm. The heat sink is designed to eliminate spreading through the substrate, and back heat loss. Experimentation showed that the critical heat flux was 12.8 W/cm/sup 2/. A high speed camera (400 frames/s) was used to record and quantify the effect of heat flux on departure diameter and bubble emission frequency. Both departure diameter and frequency showed an increasing trend with heat flux. Comparisons with existing literature are also presented.</abstract><pub>IEEE</pub><doi>10.1109/TCAPT.2005.850536</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1521-3331
ispartof IEEE transactions on components and packaging technologies, 2006-03, Vol.29 (1), p.89-97
issn 1521-3331
1557-9972
language eng
recordid cdi_crossref_primary_10_1109_TCAPT_2005_850536
source IEEE Electronic Library (IEL)
subjects Bonding
Bubble emission frequency
departure diameter
Dielectric substrates
Etching
Frequency
Heat sinks
Heat transfer
Immersion cooling
Microelectronics
Mouth
pool boiling
reentrant cavities
Silicon
thermal management of electronics
title Benchmark heat transfer data for microstructured surfaces for immersion-cooled microelectronics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A44%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benchmark%20heat%20transfer%20data%20for%20microstructured%20surfaces%20for%20immersion-cooled%20microelectronics&rft.jtitle=IEEE%20transactions%20on%20components%20and%20packaging%20technologies&rft.au=Nimkar,%20N.D.&rft.date=2006-03&rft.volume=29&rft.issue=1&rft.spage=89&rft.epage=97&rft.pages=89-97&rft.issn=1521-3331&rft.eissn=1557-9972&rft.coden=ITCPFB&rft_id=info:doi/10.1109/TCAPT.2005.850536&rft_dat=%3Ccrossref_RIE%3E10_1109_TCAPT_2005_850536%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1599497&rfr_iscdi=true