Benchmark heat transfer data for microstructured surfaces for immersion-cooled microelectronics
Pool boiling from a surface featuring micropyramidal reentrant cavities (mouth size 40 /spl mu/m) etched in silicon, bonded to a glass substrate, was studied. All experiments were conducted in the dielectric fluid FC-72 at 1 atm. The heat sink is designed to eliminate spreading through the substrate...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on components and packaging technologies 2006-03, Vol.29 (1), p.89-97 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 97 |
---|---|
container_issue | 1 |
container_start_page | 89 |
container_title | IEEE transactions on components and packaging technologies |
container_volume | 29 |
creator | Nimkar, N.D. Bhavnani, S.H. Jaeger, R.C. |
description | Pool boiling from a surface featuring micropyramidal reentrant cavities (mouth size 40 /spl mu/m) etched in silicon, bonded to a glass substrate, was studied. All experiments were conducted in the dielectric fluid FC-72 at 1 atm. The heat sink is designed to eliminate spreading through the substrate, and back heat loss. Experimentation showed that the critical heat flux was 12.8 W/cm/sup 2/. A high speed camera (400 frames/s) was used to record and quantify the effect of heat flux on departure diameter and bubble emission frequency. Both departure diameter and frequency showed an increasing trend with heat flux. Comparisons with existing literature are also presented. |
doi_str_mv | 10.1109/TCAPT.2005.850536 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCAPT_2005_850536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1599497</ieee_id><sourcerecordid>10_1109_TCAPT_2005_850536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-ac6ca0749a1d75a80c18e57996a4530b9ef3debb798658c5103fa86b9e05cb513</originalsourceid><addsrcrecordid>eNpFkM9OwzAMxiMEEmPwAIhLX6DDaeomOY6Jf9IkOIxzlKaOVlhblKQH3p52Q-Jky9_3WfaPsVsOK85B3-826_fdqgDAlUJAUZ2xBUeUudayOJ_7gudCCH7JrmL8BOClKvWCmQfq3b6z4Svbk01ZCraPnkLW2GQzP4Ssa10YYgqjS2OgJotj8NZRPIpt11GI7dDnbhgOk3p004FcCkPfunjNLrw9RLr5q0v28fS427zk27fn1816m7uiwpRbVzkLstSWNxKtAscVodS6siUKqDV50VBdS60qVA45CG9VNc0BXY1cLBk_7Z2PjYG8-Q7t9NaP4WBmQuZIyMyEzInQlLk7ZVoi-vej1qWW4hc_HWUL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Benchmark heat transfer data for microstructured surfaces for immersion-cooled microelectronics</title><source>IEEE Electronic Library (IEL)</source><creator>Nimkar, N.D. ; Bhavnani, S.H. ; Jaeger, R.C.</creator><creatorcontrib>Nimkar, N.D. ; Bhavnani, S.H. ; Jaeger, R.C.</creatorcontrib><description>Pool boiling from a surface featuring micropyramidal reentrant cavities (mouth size 40 /spl mu/m) etched in silicon, bonded to a glass substrate, was studied. All experiments were conducted in the dielectric fluid FC-72 at 1 atm. The heat sink is designed to eliminate spreading through the substrate, and back heat loss. Experimentation showed that the critical heat flux was 12.8 W/cm/sup 2/. A high speed camera (400 frames/s) was used to record and quantify the effect of heat flux on departure diameter and bubble emission frequency. Both departure diameter and frequency showed an increasing trend with heat flux. Comparisons with existing literature are also presented.</description><identifier>ISSN: 1521-3331</identifier><identifier>EISSN: 1557-9972</identifier><identifier>DOI: 10.1109/TCAPT.2005.850536</identifier><identifier>CODEN: ITCPFB</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bonding ; Bubble emission frequency ; departure diameter ; Dielectric substrates ; Etching ; Frequency ; Heat sinks ; Heat transfer ; Immersion cooling ; Microelectronics ; Mouth ; pool boiling ; reentrant cavities ; Silicon ; thermal management of electronics</subject><ispartof>IEEE transactions on components and packaging technologies, 2006-03, Vol.29 (1), p.89-97</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-ac6ca0749a1d75a80c18e57996a4530b9ef3debb798658c5103fa86b9e05cb513</citedby><cites>FETCH-LOGICAL-c265t-ac6ca0749a1d75a80c18e57996a4530b9ef3debb798658c5103fa86b9e05cb513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1599497$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1599497$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nimkar, N.D.</creatorcontrib><creatorcontrib>Bhavnani, S.H.</creatorcontrib><creatorcontrib>Jaeger, R.C.</creatorcontrib><title>Benchmark heat transfer data for microstructured surfaces for immersion-cooled microelectronics</title><title>IEEE transactions on components and packaging technologies</title><addtitle>TCAPT</addtitle><description>Pool boiling from a surface featuring micropyramidal reentrant cavities (mouth size 40 /spl mu/m) etched in silicon, bonded to a glass substrate, was studied. All experiments were conducted in the dielectric fluid FC-72 at 1 atm. The heat sink is designed to eliminate spreading through the substrate, and back heat loss. Experimentation showed that the critical heat flux was 12.8 W/cm/sup 2/. A high speed camera (400 frames/s) was used to record and quantify the effect of heat flux on departure diameter and bubble emission frequency. Both departure diameter and frequency showed an increasing trend with heat flux. Comparisons with existing literature are also presented.</description><subject>Bonding</subject><subject>Bubble emission frequency</subject><subject>departure diameter</subject><subject>Dielectric substrates</subject><subject>Etching</subject><subject>Frequency</subject><subject>Heat sinks</subject><subject>Heat transfer</subject><subject>Immersion cooling</subject><subject>Microelectronics</subject><subject>Mouth</subject><subject>pool boiling</subject><subject>reentrant cavities</subject><subject>Silicon</subject><subject>thermal management of electronics</subject><issn>1521-3331</issn><issn>1557-9972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkM9OwzAMxiMEEmPwAIhLX6DDaeomOY6Jf9IkOIxzlKaOVlhblKQH3p52Q-Jky9_3WfaPsVsOK85B3-826_fdqgDAlUJAUZ2xBUeUudayOJ_7gudCCH7JrmL8BOClKvWCmQfq3b6z4Svbk01ZCraPnkLW2GQzP4Ssa10YYgqjS2OgJotj8NZRPIpt11GI7dDnbhgOk3p004FcCkPfunjNLrw9RLr5q0v28fS427zk27fn1816m7uiwpRbVzkLstSWNxKtAscVodS6siUKqDV50VBdS60qVA45CG9VNc0BXY1cLBk_7Z2PjYG8-Q7t9NaP4WBmQuZIyMyEzInQlLk7ZVoi-vej1qWW4hc_HWUL</recordid><startdate>200603</startdate><enddate>200603</enddate><creator>Nimkar, N.D.</creator><creator>Bhavnani, S.H.</creator><creator>Jaeger, R.C.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200603</creationdate><title>Benchmark heat transfer data for microstructured surfaces for immersion-cooled microelectronics</title><author>Nimkar, N.D. ; Bhavnani, S.H. ; Jaeger, R.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-ac6ca0749a1d75a80c18e57996a4530b9ef3debb798658c5103fa86b9e05cb513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Bonding</topic><topic>Bubble emission frequency</topic><topic>departure diameter</topic><topic>Dielectric substrates</topic><topic>Etching</topic><topic>Frequency</topic><topic>Heat sinks</topic><topic>Heat transfer</topic><topic>Immersion cooling</topic><topic>Microelectronics</topic><topic>Mouth</topic><topic>pool boiling</topic><topic>reentrant cavities</topic><topic>Silicon</topic><topic>thermal management of electronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nimkar, N.D.</creatorcontrib><creatorcontrib>Bhavnani, S.H.</creatorcontrib><creatorcontrib>Jaeger, R.C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on components and packaging technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nimkar, N.D.</au><au>Bhavnani, S.H.</au><au>Jaeger, R.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benchmark heat transfer data for microstructured surfaces for immersion-cooled microelectronics</atitle><jtitle>IEEE transactions on components and packaging technologies</jtitle><stitle>TCAPT</stitle><date>2006-03</date><risdate>2006</risdate><volume>29</volume><issue>1</issue><spage>89</spage><epage>97</epage><pages>89-97</pages><issn>1521-3331</issn><eissn>1557-9972</eissn><coden>ITCPFB</coden><abstract>Pool boiling from a surface featuring micropyramidal reentrant cavities (mouth size 40 /spl mu/m) etched in silicon, bonded to a glass substrate, was studied. All experiments were conducted in the dielectric fluid FC-72 at 1 atm. The heat sink is designed to eliminate spreading through the substrate, and back heat loss. Experimentation showed that the critical heat flux was 12.8 W/cm/sup 2/. A high speed camera (400 frames/s) was used to record and quantify the effect of heat flux on departure diameter and bubble emission frequency. Both departure diameter and frequency showed an increasing trend with heat flux. Comparisons with existing literature are also presented.</abstract><pub>IEEE</pub><doi>10.1109/TCAPT.2005.850536</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1521-3331 |
ispartof | IEEE transactions on components and packaging technologies, 2006-03, Vol.29 (1), p.89-97 |
issn | 1521-3331 1557-9972 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCAPT_2005_850536 |
source | IEEE Electronic Library (IEL) |
subjects | Bonding Bubble emission frequency departure diameter Dielectric substrates Etching Frequency Heat sinks Heat transfer Immersion cooling Microelectronics Mouth pool boiling reentrant cavities Silicon thermal management of electronics |
title | Benchmark heat transfer data for microstructured surfaces for immersion-cooled microelectronics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A44%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benchmark%20heat%20transfer%20data%20for%20microstructured%20surfaces%20for%20immersion-cooled%20microelectronics&rft.jtitle=IEEE%20transactions%20on%20components%20and%20packaging%20technologies&rft.au=Nimkar,%20N.D.&rft.date=2006-03&rft.volume=29&rft.issue=1&rft.spage=89&rft.epage=97&rft.pages=89-97&rft.issn=1521-3331&rft.eissn=1557-9972&rft.coden=ITCPFB&rft_id=info:doi/10.1109/TCAPT.2005.850536&rft_dat=%3Ccrossref_RIE%3E10_1109_TCAPT_2005_850536%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1599497&rfr_iscdi=true |