A Scalable and Adaptable ILP-Based Approach for Task Mapping on MPSoC Considering Load Balance and Communication Optimization

Task mapping has been a hot topic in multiprocessor system-on-chip software design for decades. During the mapping process, load balance (LB) and communication optimization have been two important performance optimization factors. This paper studies the relations between LB, interprocessor communica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 2019-09, Vol.38 (9), p.1744-1757
Hauptverfasser: Huang, Kai, Zhang, Xiaomeng, Zheng, Dandan, Yu, Min, Jiang, Xiaowen, Yan, Xiaolang, de Brisolara, Lisane B., Jerraya, Ahmed Amine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1757
container_issue 9
container_start_page 1744
container_title IEEE transactions on computer-aided design of integrated circuits and systems
container_volume 38
creator Huang, Kai
Zhang, Xiaomeng
Zheng, Dandan
Yu, Min
Jiang, Xiaowen
Yan, Xiaolang
de Brisolara, Lisane B.
Jerraya, Ahmed Amine
description Task mapping has been a hot topic in multiprocessor system-on-chip software design for decades. During the mapping process, load balance (LB) and communication optimization have been two important performance optimization factors. This paper studies the relations between LB, interprocessor communications, and communication pipeline technique during the mapping process, and proposes an integer linear programming (ILP)-based static task mapping approach, which considers both LB and communication optimization. The approach consists of an optimized ILP model for task mapping with fewer variables compared to previous ILP mapping works. Moreover, to enhance the scalability of the ILP task mapping, the task-processor-cluster algorithm is proposed to reduce the scale of the task graph and the number of processors and then solve the coarse-grained input by the ILP mapping. To increase the adaptability of the ILP task mapping, the improved augmented \epsilon -constraint method is further integrated with the ILP formulations to select the best mapping for different applications. Experimental results on a 2/4/8/16/24-CPU platform of both synthetic and real-life benchmarks demonstrate the efficiency of the proposed approach.
doi_str_mv 10.1109/TCAD.2018.2859400
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCAD_2018_2859400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8419265</ieee_id><sourcerecordid>2278398028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-ff309f03ba103d32cc66c492225031226a3c54977ddb14473e961271da8ae11d3</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EEqXwAxAXS5xTdu28fEzDq1KrVmo5R67tQEoThzg9gMR_J2kqTqtZzcxqP0JuESaIIB42afI4YYDxhMWB8AHOyAgFjzwfAzwnI2BR7AFEcEmunNsBoB8wMSK_CV0ruZfbvaGy0jTRsm6PajZfeVPpTLer68ZK9UFz29CNdJ90Ieu6qN6prehitbYpTW3lCm2afjm3UtNp11mpoTO1ZXmoCiXbogss67Yoi5-juCYXudw7c3OaY_L2_LRJX7358mWWJnNPMcFbL885iBz4ViJwzZlSYah8wRgLgCNjoeQq8EUUab1F34-4ESGyCLWMpUHUfEzuh97uka-DcW22s4em6k5mrAPDRQws7lw4uFRjnWtMntVNUcrmO0PIespZTznrKWcnyl3mbsgUxph_f-yjYGHA_wCD-Xc0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2278398028</pqid></control><display><type>article</type><title>A Scalable and Adaptable ILP-Based Approach for Task Mapping on MPSoC Considering Load Balance and Communication Optimization</title><source>IEEE Electronic Library (IEL)</source><creator>Huang, Kai ; Zhang, Xiaomeng ; Zheng, Dandan ; Yu, Min ; Jiang, Xiaowen ; Yan, Xiaolang ; de Brisolara, Lisane B. ; Jerraya, Ahmed Amine</creator><creatorcontrib>Huang, Kai ; Zhang, Xiaomeng ; Zheng, Dandan ; Yu, Min ; Jiang, Xiaowen ; Yan, Xiaolang ; de Brisolara, Lisane B. ; Jerraya, Ahmed Amine</creatorcontrib><description>Task mapping has been a hot topic in multiprocessor system-on-chip software design for decades. During the mapping process, load balance (LB) and communication optimization have been two important performance optimization factors. This paper studies the relations between LB, interprocessor communications, and communication pipeline technique during the mapping process, and proposes an integer linear programming (ILP)-based static task mapping approach, which considers both LB and communication optimization. The approach consists of an optimized ILP model for task mapping with fewer variables compared to previous ILP mapping works. Moreover, to enhance the scalability of the ILP task mapping, the task-processor-cluster algorithm is proposed to reduce the scale of the task graph and the number of processors and then solve the coarse-grained input by the ILP mapping. To increase the adaptability of the ILP task mapping, the improved augmented &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\epsilon &lt;/tex-math&gt;&lt;/inline-formula&gt;-constraint method is further integrated with the ILP formulations to select the best mapping for different applications. Experimental results on a 2/4/8/16/24-CPU platform of both synthetic and real-life benchmarks demonstrate the efficiency of the proposed approach.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2018.2859400</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Clustering algorithms ; Communication ; Formulations ; Graph partitioning ; integer linear programming (ILP) ; Integer programming ; Linear programming ; Load balancing ; Load modeling ; Mapping ; Microprocessors ; multiobjective optimization ; Multiprocessing ; multiprocessor system-on-chip (MPSoC) ; Optimization ; Partitioning algorithms ; Pipelines ; Program processors ; System on chip ; Task analysis ; task mapping</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2019-09, Vol.38 (9), p.1744-1757</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-ff309f03ba103d32cc66c492225031226a3c54977ddb14473e961271da8ae11d3</citedby><cites>FETCH-LOGICAL-c293t-ff309f03ba103d32cc66c492225031226a3c54977ddb14473e961271da8ae11d3</cites><orcidid>0000-0002-2593-2969</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8419265$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8419265$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, Kai</creatorcontrib><creatorcontrib>Zhang, Xiaomeng</creatorcontrib><creatorcontrib>Zheng, Dandan</creatorcontrib><creatorcontrib>Yu, Min</creatorcontrib><creatorcontrib>Jiang, Xiaowen</creatorcontrib><creatorcontrib>Yan, Xiaolang</creatorcontrib><creatorcontrib>de Brisolara, Lisane B.</creatorcontrib><creatorcontrib>Jerraya, Ahmed Amine</creatorcontrib><title>A Scalable and Adaptable ILP-Based Approach for Task Mapping on MPSoC Considering Load Balance and Communication Optimization</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>Task mapping has been a hot topic in multiprocessor system-on-chip software design for decades. During the mapping process, load balance (LB) and communication optimization have been two important performance optimization factors. This paper studies the relations between LB, interprocessor communications, and communication pipeline technique during the mapping process, and proposes an integer linear programming (ILP)-based static task mapping approach, which considers both LB and communication optimization. The approach consists of an optimized ILP model for task mapping with fewer variables compared to previous ILP mapping works. Moreover, to enhance the scalability of the ILP task mapping, the task-processor-cluster algorithm is proposed to reduce the scale of the task graph and the number of processors and then solve the coarse-grained input by the ILP mapping. To increase the adaptability of the ILP task mapping, the improved augmented &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\epsilon &lt;/tex-math&gt;&lt;/inline-formula&gt;-constraint method is further integrated with the ILP formulations to select the best mapping for different applications. Experimental results on a 2/4/8/16/24-CPU platform of both synthetic and real-life benchmarks demonstrate the efficiency of the proposed approach.</description><subject>Algorithms</subject><subject>Clustering algorithms</subject><subject>Communication</subject><subject>Formulations</subject><subject>Graph partitioning</subject><subject>integer linear programming (ILP)</subject><subject>Integer programming</subject><subject>Linear programming</subject><subject>Load balancing</subject><subject>Load modeling</subject><subject>Mapping</subject><subject>Microprocessors</subject><subject>multiobjective optimization</subject><subject>Multiprocessing</subject><subject>multiprocessor system-on-chip (MPSoC)</subject><subject>Optimization</subject><subject>Partitioning algorithms</subject><subject>Pipelines</subject><subject>Program processors</subject><subject>System on chip</subject><subject>Task analysis</subject><subject>task mapping</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPwzAQhC0EEqXwAxAXS5xTdu28fEzDq1KrVmo5R67tQEoThzg9gMR_J2kqTqtZzcxqP0JuESaIIB42afI4YYDxhMWB8AHOyAgFjzwfAzwnI2BR7AFEcEmunNsBoB8wMSK_CV0ruZfbvaGy0jTRsm6PajZfeVPpTLer68ZK9UFz29CNdJ90Ieu6qN6prehitbYpTW3lCm2afjm3UtNp11mpoTO1ZXmoCiXbogss67Yoi5-juCYXudw7c3OaY_L2_LRJX7358mWWJnNPMcFbL885iBz4ViJwzZlSYah8wRgLgCNjoeQq8EUUab1F34-4ESGyCLWMpUHUfEzuh97uka-DcW22s4em6k5mrAPDRQws7lw4uFRjnWtMntVNUcrmO0PIespZTznrKWcnyl3mbsgUxph_f-yjYGHA_wCD-Xc0</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Huang, Kai</creator><creator>Zhang, Xiaomeng</creator><creator>Zheng, Dandan</creator><creator>Yu, Min</creator><creator>Jiang, Xiaowen</creator><creator>Yan, Xiaolang</creator><creator>de Brisolara, Lisane B.</creator><creator>Jerraya, Ahmed Amine</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2593-2969</orcidid></search><sort><creationdate>20190901</creationdate><title>A Scalable and Adaptable ILP-Based Approach for Task Mapping on MPSoC Considering Load Balance and Communication Optimization</title><author>Huang, Kai ; Zhang, Xiaomeng ; Zheng, Dandan ; Yu, Min ; Jiang, Xiaowen ; Yan, Xiaolang ; de Brisolara, Lisane B. ; Jerraya, Ahmed Amine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-ff309f03ba103d32cc66c492225031226a3c54977ddb14473e961271da8ae11d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Clustering algorithms</topic><topic>Communication</topic><topic>Formulations</topic><topic>Graph partitioning</topic><topic>integer linear programming (ILP)</topic><topic>Integer programming</topic><topic>Linear programming</topic><topic>Load balancing</topic><topic>Load modeling</topic><topic>Mapping</topic><topic>Microprocessors</topic><topic>multiobjective optimization</topic><topic>Multiprocessing</topic><topic>multiprocessor system-on-chip (MPSoC)</topic><topic>Optimization</topic><topic>Partitioning algorithms</topic><topic>Pipelines</topic><topic>Program processors</topic><topic>System on chip</topic><topic>Task analysis</topic><topic>task mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Kai</creatorcontrib><creatorcontrib>Zhang, Xiaomeng</creatorcontrib><creatorcontrib>Zheng, Dandan</creatorcontrib><creatorcontrib>Yu, Min</creatorcontrib><creatorcontrib>Jiang, Xiaowen</creatorcontrib><creatorcontrib>Yan, Xiaolang</creatorcontrib><creatorcontrib>de Brisolara, Lisane B.</creatorcontrib><creatorcontrib>Jerraya, Ahmed Amine</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Kai</au><au>Zhang, Xiaomeng</au><au>Zheng, Dandan</au><au>Yu, Min</au><au>Jiang, Xiaowen</au><au>Yan, Xiaolang</au><au>de Brisolara, Lisane B.</au><au>Jerraya, Ahmed Amine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Scalable and Adaptable ILP-Based Approach for Task Mapping on MPSoC Considering Load Balance and Communication Optimization</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>38</volume><issue>9</issue><spage>1744</spage><epage>1757</epage><pages>1744-1757</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>Task mapping has been a hot topic in multiprocessor system-on-chip software design for decades. During the mapping process, load balance (LB) and communication optimization have been two important performance optimization factors. This paper studies the relations between LB, interprocessor communications, and communication pipeline technique during the mapping process, and proposes an integer linear programming (ILP)-based static task mapping approach, which considers both LB and communication optimization. The approach consists of an optimized ILP model for task mapping with fewer variables compared to previous ILP mapping works. Moreover, to enhance the scalability of the ILP task mapping, the task-processor-cluster algorithm is proposed to reduce the scale of the task graph and the number of processors and then solve the coarse-grained input by the ILP mapping. To increase the adaptability of the ILP task mapping, the improved augmented &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\epsilon &lt;/tex-math&gt;&lt;/inline-formula&gt;-constraint method is further integrated with the ILP formulations to select the best mapping for different applications. Experimental results on a 2/4/8/16/24-CPU platform of both synthetic and real-life benchmarks demonstrate the efficiency of the proposed approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2018.2859400</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2593-2969</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0070
ispartof IEEE transactions on computer-aided design of integrated circuits and systems, 2019-09, Vol.38 (9), p.1744-1757
issn 0278-0070
1937-4151
language eng
recordid cdi_crossref_primary_10_1109_TCAD_2018_2859400
source IEEE Electronic Library (IEL)
subjects Algorithms
Clustering algorithms
Communication
Formulations
Graph partitioning
integer linear programming (ILP)
Integer programming
Linear programming
Load balancing
Load modeling
Mapping
Microprocessors
multiobjective optimization
Multiprocessing
multiprocessor system-on-chip (MPSoC)
Optimization
Partitioning algorithms
Pipelines
Program processors
System on chip
Task analysis
task mapping
title A Scalable and Adaptable ILP-Based Approach for Task Mapping on MPSoC Considering Load Balance and Communication Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A31%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Scalable%20and%20Adaptable%20ILP-Based%20Approach%20for%20Task%20Mapping%20on%20MPSoC%20Considering%20Load%20Balance%20and%20Communication%20Optimization&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Huang,%20Kai&rft.date=2019-09-01&rft.volume=38&rft.issue=9&rft.spage=1744&rft.epage=1757&rft.pages=1744-1757&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2018.2859400&rft_dat=%3Cproquest_RIE%3E2278398028%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2278398028&rft_id=info:pmid/&rft_ieee_id=8419265&rfr_iscdi=true