NeuroSim: A Circuit-Level Macro Model for Benchmarking Neuro-Inspired Architectures in Online Learning
Neuro-inspired architectures based on synaptic memory arrays have been proposed for on-chip acceleration of weighted sum and weight update in machine/deep learning algorithms. In this paper, we developed NeuroSim, a circuit-level macro model that estimates the area, latency, dynamic energy, and leak...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computer-aided design of integrated circuits and systems 2018-12, Vol.37 (12), p.3067-3080 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3080 |
---|---|
container_issue | 12 |
container_start_page | 3067 |
container_title | IEEE transactions on computer-aided design of integrated circuits and systems |
container_volume | 37 |
creator | Chen, Pai-Yu Peng, Xiaochen Yu, Shimeng |
description | Neuro-inspired architectures based on synaptic memory arrays have been proposed for on-chip acceleration of weighted sum and weight update in machine/deep learning algorithms. In this paper, we developed NeuroSim, a circuit-level macro model that estimates the area, latency, dynamic energy, and leakage power to facilitate the design space exploration of neuro-inspired architectures with mainstream and emerging device technologies. NeuroSim provides flexible interface and a wide variety of design options at the circuit and device level. Therefore, NeuroSim can be used by neural networks (NNs) as a supporting tool to provide circuit-level performance evaluation. With NeuroSim, an integrated framework can be built with hierarchical organization from the device level (synaptic device properties) to the circuit level (array architectures) and then to the algorithm level (NN topology), enabling instruction-accurate evaluation on the learning accuracy as well as the circuit-level performance metrics at the run-time of online learning. Using multilayer perceptron as a case-study algorithm, we investigated the impact of the "analog" emerging nonvolatile memory (eNVM)'s "nonideal" device properties and benchmarked the tradeoffs between SRAM, digital, and analog eNVM-based architectures for online learning and offline classification. |
doi_str_mv | 10.1109/TCAD.2018.2789723 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCAD_2018_2789723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8246561</ieee_id><sourcerecordid>2137579598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-1eb9abc6a27a7e7447bf3943655c1739704b23e7978cc881387f97af6918c75e3</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEEmPwAxCXSJw7kiatE26lfE3q2IFxrtrMZRmjHUmLxL8nYxMnW9bz2vJDyCVnE86Zvlnk2f0kZlxNYlAaYnFERlwLiCRP-DEZsTCOGAN2Ss68XzPGZRLrEWlecHDdq_28pRnNrTOD7aMCv3FDZ5VxHZ11y9A3naN32JrVZ-U-bPtO_2LRtPVb63BJM2dWtkfTDw49tS2dtxvbIi2wcm3gz8lJU208XhzqmLw9Pizy56iYP03zrIiMULKPONa6qk1axVABgpRQN0JLkSaJ4SA0MFnHAkGDMkYpLhQ0Gqom1VwZSFCMyfV-79Z1XwP6vlx3g2vDyTLmAhLQiVaB4nsqPOi9w6bcOhs--yk5K3c6y53OcqezPOgMmat9xiLiP69imSYpF7_zenA4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2137579598</pqid></control><display><type>article</type><title>NeuroSim: A Circuit-Level Macro Model for Benchmarking Neuro-Inspired Architectures in Online Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Pai-Yu ; Peng, Xiaochen ; Yu, Shimeng</creator><creatorcontrib>Chen, Pai-Yu ; Peng, Xiaochen ; Yu, Shimeng</creatorcontrib><description>Neuro-inspired architectures based on synaptic memory arrays have been proposed for on-chip acceleration of weighted sum and weight update in machine/deep learning algorithms. In this paper, we developed NeuroSim, a circuit-level macro model that estimates the area, latency, dynamic energy, and leakage power to facilitate the design space exploration of neuro-inspired architectures with mainstream and emerging device technologies. NeuroSim provides flexible interface and a wide variety of design options at the circuit and device level. Therefore, NeuroSim can be used by neural networks (NNs) as a supporting tool to provide circuit-level performance evaluation. With NeuroSim, an integrated framework can be built with hierarchical organization from the device level (synaptic device properties) to the circuit level (array architectures) and then to the algorithm level (NN topology), enabling instruction-accurate evaluation on the learning accuracy as well as the circuit-level performance metrics at the run-time of online learning. Using multilayer perceptron as a case-study algorithm, we investigated the impact of the "analog" emerging nonvolatile memory (eNVM)'s "nonideal" device properties and benchmarked the tradeoffs between SRAM, digital, and analog eNVM-based architectures for online learning and offline classification.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2018.2789723</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Artificial neural networks ; Circuit design ; Computer architecture ; Distance learning ; Emerging nonvolatile memory (eNVM) ; Integrated circuit modeling ; Machine learning ; Microprocessors ; Multilayer perceptrons ; neural network (NN) ; Neural networks ; neuromorphic computing ; Neuromorphics ; offline classification ; online learning ; Performance evaluation ; Performance measurement ; Static random access memory ; synaptic devices ; Weight</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2018-12, Vol.37 (12), p.3067-3080</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-1eb9abc6a27a7e7447bf3943655c1739704b23e7978cc881387f97af6918c75e3</citedby><cites>FETCH-LOGICAL-c384t-1eb9abc6a27a7e7447bf3943655c1739704b23e7978cc881387f97af6918c75e3</cites><orcidid>0000-0002-0068-3652 ; 0000-0002-9146-2192</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8246561$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8246561$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Pai-Yu</creatorcontrib><creatorcontrib>Peng, Xiaochen</creatorcontrib><creatorcontrib>Yu, Shimeng</creatorcontrib><title>NeuroSim: A Circuit-Level Macro Model for Benchmarking Neuro-Inspired Architectures in Online Learning</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>Neuro-inspired architectures based on synaptic memory arrays have been proposed for on-chip acceleration of weighted sum and weight update in machine/deep learning algorithms. In this paper, we developed NeuroSim, a circuit-level macro model that estimates the area, latency, dynamic energy, and leakage power to facilitate the design space exploration of neuro-inspired architectures with mainstream and emerging device technologies. NeuroSim provides flexible interface and a wide variety of design options at the circuit and device level. Therefore, NeuroSim can be used by neural networks (NNs) as a supporting tool to provide circuit-level performance evaluation. With NeuroSim, an integrated framework can be built with hierarchical organization from the device level (synaptic device properties) to the circuit level (array architectures) and then to the algorithm level (NN topology), enabling instruction-accurate evaluation on the learning accuracy as well as the circuit-level performance metrics at the run-time of online learning. Using multilayer perceptron as a case-study algorithm, we investigated the impact of the "analog" emerging nonvolatile memory (eNVM)'s "nonideal" device properties and benchmarked the tradeoffs between SRAM, digital, and analog eNVM-based architectures for online learning and offline classification.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Circuit design</subject><subject>Computer architecture</subject><subject>Distance learning</subject><subject>Emerging nonvolatile memory (eNVM)</subject><subject>Integrated circuit modeling</subject><subject>Machine learning</subject><subject>Microprocessors</subject><subject>Multilayer perceptrons</subject><subject>neural network (NN)</subject><subject>Neural networks</subject><subject>neuromorphic computing</subject><subject>Neuromorphics</subject><subject>offline classification</subject><subject>online learning</subject><subject>Performance evaluation</subject><subject>Performance measurement</subject><subject>Static random access memory</subject><subject>synaptic devices</subject><subject>Weight</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwzAMhiMEEmPwAxCXSJw7kiatE26lfE3q2IFxrtrMZRmjHUmLxL8nYxMnW9bz2vJDyCVnE86Zvlnk2f0kZlxNYlAaYnFERlwLiCRP-DEZsTCOGAN2Ss68XzPGZRLrEWlecHDdq_28pRnNrTOD7aMCv3FDZ5VxHZ11y9A3naN32JrVZ-U-bPtO_2LRtPVb63BJM2dWtkfTDw49tS2dtxvbIi2wcm3gz8lJU208XhzqmLw9Pizy56iYP03zrIiMULKPONa6qk1axVABgpRQN0JLkSaJ4SA0MFnHAkGDMkYpLhQ0Gqom1VwZSFCMyfV-79Z1XwP6vlx3g2vDyTLmAhLQiVaB4nsqPOi9w6bcOhs--yk5K3c6y53OcqezPOgMmat9xiLiP69imSYpF7_zenA4</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Chen, Pai-Yu</creator><creator>Peng, Xiaochen</creator><creator>Yu, Shimeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0068-3652</orcidid><orcidid>https://orcid.org/0000-0002-9146-2192</orcidid></search><sort><creationdate>20181201</creationdate><title>NeuroSim: A Circuit-Level Macro Model for Benchmarking Neuro-Inspired Architectures in Online Learning</title><author>Chen, Pai-Yu ; Peng, Xiaochen ; Yu, Shimeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-1eb9abc6a27a7e7447bf3943655c1739704b23e7978cc881387f97af6918c75e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Circuit design</topic><topic>Computer architecture</topic><topic>Distance learning</topic><topic>Emerging nonvolatile memory (eNVM)</topic><topic>Integrated circuit modeling</topic><topic>Machine learning</topic><topic>Microprocessors</topic><topic>Multilayer perceptrons</topic><topic>neural network (NN)</topic><topic>Neural networks</topic><topic>neuromorphic computing</topic><topic>Neuromorphics</topic><topic>offline classification</topic><topic>online learning</topic><topic>Performance evaluation</topic><topic>Performance measurement</topic><topic>Static random access memory</topic><topic>synaptic devices</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Pai-Yu</creatorcontrib><creatorcontrib>Peng, Xiaochen</creatorcontrib><creatorcontrib>Yu, Shimeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Pai-Yu</au><au>Peng, Xiaochen</au><au>Yu, Shimeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NeuroSim: A Circuit-Level Macro Model for Benchmarking Neuro-Inspired Architectures in Online Learning</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>37</volume><issue>12</issue><spage>3067</spage><epage>3080</epage><pages>3067-3080</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>Neuro-inspired architectures based on synaptic memory arrays have been proposed for on-chip acceleration of weighted sum and weight update in machine/deep learning algorithms. In this paper, we developed NeuroSim, a circuit-level macro model that estimates the area, latency, dynamic energy, and leakage power to facilitate the design space exploration of neuro-inspired architectures with mainstream and emerging device technologies. NeuroSim provides flexible interface and a wide variety of design options at the circuit and device level. Therefore, NeuroSim can be used by neural networks (NNs) as a supporting tool to provide circuit-level performance evaluation. With NeuroSim, an integrated framework can be built with hierarchical organization from the device level (synaptic device properties) to the circuit level (array architectures) and then to the algorithm level (NN topology), enabling instruction-accurate evaluation on the learning accuracy as well as the circuit-level performance metrics at the run-time of online learning. Using multilayer perceptron as a case-study algorithm, we investigated the impact of the "analog" emerging nonvolatile memory (eNVM)'s "nonideal" device properties and benchmarked the tradeoffs between SRAM, digital, and analog eNVM-based architectures for online learning and offline classification.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2018.2789723</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0068-3652</orcidid><orcidid>https://orcid.org/0000-0002-9146-2192</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0070 |
ispartof | IEEE transactions on computer-aided design of integrated circuits and systems, 2018-12, Vol.37 (12), p.3067-3080 |
issn | 0278-0070 1937-4151 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCAD_2018_2789723 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Algorithms Artificial neural networks Circuit design Computer architecture Distance learning Emerging nonvolatile memory (eNVM) Integrated circuit modeling Machine learning Microprocessors Multilayer perceptrons neural network (NN) Neural networks neuromorphic computing Neuromorphics offline classification online learning Performance evaluation Performance measurement Static random access memory synaptic devices Weight |
title | NeuroSim: A Circuit-Level Macro Model for Benchmarking Neuro-Inspired Architectures in Online Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T20%3A33%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NeuroSim:%20A%20Circuit-Level%20Macro%20Model%20for%20Benchmarking%20Neuro-Inspired%20Architectures%20in%20Online%20Learning&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Chen,%20Pai-Yu&rft.date=2018-12-01&rft.volume=37&rft.issue=12&rft.spage=3067&rft.epage=3080&rft.pages=3067-3080&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2018.2789723&rft_dat=%3Cproquest_RIE%3E2137579598%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2137579598&rft_id=info:pmid/&rft_ieee_id=8246561&rfr_iscdi=true |