Quantitative Performance Evaluation of Uncertainty-Aware Hybrid AADL Designs Using Statistical Model Checking
The hybrid architecture analysis and design language (AADL) has been proposed to model the interactions between embedded control systems and continuous physical environment. However, the worst-case performance analysis of hybrid AADL designs often leads to overly pessimistic estimations, and is not...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computer-aided design of integrated circuits and systems 2017-12, Vol.36 (12), p.1989-2002 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2002 |
---|---|
container_issue | 12 |
container_start_page | 1989 |
container_title | IEEE transactions on computer-aided design of integrated circuits and systems |
container_volume | 36 |
creator | Yongxiang Bao Mingsong Chen Qi Zhu Tongquan Wei Mallet, Frederic Tingliang Zhou |
description | The hybrid architecture analysis and design language (AADL) has been proposed to model the interactions between embedded control systems and continuous physical environment. However, the worst-case performance analysis of hybrid AADL designs often leads to overly pessimistic estimations, and is not suitable for accurate reasoning about overall system performance, in particular when the system closely interacts with an uncertain external environment. To address this challenge, this paper proposes a statistical model checking-based framework that can perform quantitative evaluation of uncertainty-aware hybrid AADL designs against various performance queries. Our approach extends hybrid AADL to support the modeling of environment uncertainties. Furthermore, we propose a set of transformation rules that can automatically translate AADL designs together with designers' requirements into networks of priced timed automata and performance queries, respectively. Comprehensive experimental results on the movement authority scenario of Chinese train control system level 3 demonstrate the effectiveness of our approach. |
doi_str_mv | 10.1109/TCAD.2017.2681076 |
format | Article |
fullrecord | <record><control><sourceid>hal_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCAD_2017_2681076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7875425</ieee_id><sourcerecordid>oai_HAL_hal_01644285v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-ad6e1c64f5813154d96d80d8d6171415fc618beffdfa3d961f7ae130967f11b43</originalsourceid><addsrcrecordid>eNo9kE1LwzAYx4MoOKcfQLzk6qEzT5sm6bF00wkVFbdzyJpki3atJN1k396WjZ0e-L_B80PoHsgEgGRPiyKfTmICfBIzAYSzCzSCLOERhRQu0YjEXESEcHKNbkL4JgRoGmcjtP3cqaZznerc3uAP423rt6qpDJ7tVb3r5bbBrcXLXvKdck13iPI_5Q2eH1beaZzn0xJPTXDrJuBlcM0afw1roXOVqvFbq02Ni42pfnrrFl1ZVQdzd7pjtHyeLYp5VL6_vBZ5GVUJjbtIaWagYtSmAhJIqc6YFkQLzYBD_5CtGIiVsVZblfQmWK4MJCRj3AKsaDJGj8fdjarlr3db5Q-yVU7O81IOGgFGaSzSPfRZOGYr34bgjT0XgMiBrRzYyoGtPLHtOw_HjjPGnPNc8JTGafIPgTd1vw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantitative Performance Evaluation of Uncertainty-Aware Hybrid AADL Designs Using Statistical Model Checking</title><source>IEEE Electronic Library (IEL)</source><creator>Yongxiang Bao ; Mingsong Chen ; Qi Zhu ; Tongquan Wei ; Mallet, Frederic ; Tingliang Zhou</creator><creatorcontrib>Yongxiang Bao ; Mingsong Chen ; Qi Zhu ; Tongquan Wei ; Mallet, Frederic ; Tingliang Zhou</creatorcontrib><description>The hybrid architecture analysis and design language (AADL) has been proposed to model the interactions between embedded control systems and continuous physical environment. However, the worst-case performance analysis of hybrid AADL designs often leads to overly pessimistic estimations, and is not suitable for accurate reasoning about overall system performance, in particular when the system closely interacts with an uncertain external environment. To address this challenge, this paper proposes a statistical model checking-based framework that can perform quantitative evaluation of uncertainty-aware hybrid AADL designs against various performance queries. Our approach extends hybrid AADL to support the modeling of environment uncertainties. Furthermore, we propose a set of transformation rules that can automatically translate AADL designs together with designers' requirements into networks of priced timed automata and performance queries, respectively. Comprehensive experimental results on the movement authority scenario of Chinese train control system level 3 demonstrate the effectiveness of our approach.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2017.2681076</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Computational modeling ; Computer architecture ; Computer Science ; Embedded Systems ; Hybrid architecture analysis and design language (AADL) ; Model checking ; Ports (Computers) ; quantitative performance evaluation ; Statistical analysis ; statistical model checking (SMC) ; Uncertainty</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2017-12, Vol.36 (12), p.1989-2002</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-ad6e1c64f5813154d96d80d8d6171415fc618beffdfa3d961f7ae130967f11b43</citedby><cites>FETCH-LOGICAL-c342t-ad6e1c64f5813154d96d80d8d6171415fc618beffdfa3d961f7ae130967f11b43</cites><orcidid>0000-0002-9088-9821</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7875425$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7875425$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://inria.hal.science/hal-01644285$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yongxiang Bao</creatorcontrib><creatorcontrib>Mingsong Chen</creatorcontrib><creatorcontrib>Qi Zhu</creatorcontrib><creatorcontrib>Tongquan Wei</creatorcontrib><creatorcontrib>Mallet, Frederic</creatorcontrib><creatorcontrib>Tingliang Zhou</creatorcontrib><title>Quantitative Performance Evaluation of Uncertainty-Aware Hybrid AADL Designs Using Statistical Model Checking</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>The hybrid architecture analysis and design language (AADL) has been proposed to model the interactions between embedded control systems and continuous physical environment. However, the worst-case performance analysis of hybrid AADL designs often leads to overly pessimistic estimations, and is not suitable for accurate reasoning about overall system performance, in particular when the system closely interacts with an uncertain external environment. To address this challenge, this paper proposes a statistical model checking-based framework that can perform quantitative evaluation of uncertainty-aware hybrid AADL designs against various performance queries. Our approach extends hybrid AADL to support the modeling of environment uncertainties. Furthermore, we propose a set of transformation rules that can automatically translate AADL designs together with designers' requirements into networks of priced timed automata and performance queries, respectively. Comprehensive experimental results on the movement authority scenario of Chinese train control system level 3 demonstrate the effectiveness of our approach.</description><subject>Analytical models</subject><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Computer Science</subject><subject>Embedded Systems</subject><subject>Hybrid architecture analysis and design language (AADL)</subject><subject>Model checking</subject><subject>Ports (Computers)</subject><subject>quantitative performance evaluation</subject><subject>Statistical analysis</subject><subject>statistical model checking (SMC)</subject><subject>Uncertainty</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LwzAYx4MoOKcfQLzk6qEzT5sm6bF00wkVFbdzyJpki3atJN1k396WjZ0e-L_B80PoHsgEgGRPiyKfTmICfBIzAYSzCzSCLOERhRQu0YjEXESEcHKNbkL4JgRoGmcjtP3cqaZznerc3uAP423rt6qpDJ7tVb3r5bbBrcXLXvKdck13iPI_5Q2eH1beaZzn0xJPTXDrJuBlcM0afw1roXOVqvFbq02Ni42pfnrrFl1ZVQdzd7pjtHyeLYp5VL6_vBZ5GVUJjbtIaWagYtSmAhJIqc6YFkQLzYBD_5CtGIiVsVZblfQmWK4MJCRj3AKsaDJGj8fdjarlr3db5Q-yVU7O81IOGgFGaSzSPfRZOGYr34bgjT0XgMiBrRzYyoGtPLHtOw_HjjPGnPNc8JTGafIPgTd1vw</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Yongxiang Bao</creator><creator>Mingsong Chen</creator><creator>Qi Zhu</creator><creator>Tongquan Wei</creator><creator>Mallet, Frederic</creator><creator>Tingliang Zhou</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9088-9821</orcidid></search><sort><creationdate>201712</creationdate><title>Quantitative Performance Evaluation of Uncertainty-Aware Hybrid AADL Designs Using Statistical Model Checking</title><author>Yongxiang Bao ; Mingsong Chen ; Qi Zhu ; Tongquan Wei ; Mallet, Frederic ; Tingliang Zhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-ad6e1c64f5813154d96d80d8d6171415fc618beffdfa3d961f7ae130967f11b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analytical models</topic><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Computer Science</topic><topic>Embedded Systems</topic><topic>Hybrid architecture analysis and design language (AADL)</topic><topic>Model checking</topic><topic>Ports (Computers)</topic><topic>quantitative performance evaluation</topic><topic>Statistical analysis</topic><topic>statistical model checking (SMC)</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yongxiang Bao</creatorcontrib><creatorcontrib>Mingsong Chen</creatorcontrib><creatorcontrib>Qi Zhu</creatorcontrib><creatorcontrib>Tongquan Wei</creatorcontrib><creatorcontrib>Mallet, Frederic</creatorcontrib><creatorcontrib>Tingliang Zhou</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yongxiang Bao</au><au>Mingsong Chen</au><au>Qi Zhu</au><au>Tongquan Wei</au><au>Mallet, Frederic</au><au>Tingliang Zhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative Performance Evaluation of Uncertainty-Aware Hybrid AADL Designs Using Statistical Model Checking</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2017-12</date><risdate>2017</risdate><volume>36</volume><issue>12</issue><spage>1989</spage><epage>2002</epage><pages>1989-2002</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>The hybrid architecture analysis and design language (AADL) has been proposed to model the interactions between embedded control systems and continuous physical environment. However, the worst-case performance analysis of hybrid AADL designs often leads to overly pessimistic estimations, and is not suitable for accurate reasoning about overall system performance, in particular when the system closely interacts with an uncertain external environment. To address this challenge, this paper proposes a statistical model checking-based framework that can perform quantitative evaluation of uncertainty-aware hybrid AADL designs against various performance queries. Our approach extends hybrid AADL to support the modeling of environment uncertainties. Furthermore, we propose a set of transformation rules that can automatically translate AADL designs together with designers' requirements into networks of priced timed automata and performance queries, respectively. Comprehensive experimental results on the movement authority scenario of Chinese train control system level 3 demonstrate the effectiveness of our approach.</abstract><pub>IEEE</pub><doi>10.1109/TCAD.2017.2681076</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9088-9821</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0070 |
ispartof | IEEE transactions on computer-aided design of integrated circuits and systems, 2017-12, Vol.36 (12), p.1989-2002 |
issn | 0278-0070 1937-4151 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCAD_2017_2681076 |
source | IEEE Electronic Library (IEL) |
subjects | Analytical models Computational modeling Computer architecture Computer Science Embedded Systems Hybrid architecture analysis and design language (AADL) Model checking Ports (Computers) quantitative performance evaluation Statistical analysis statistical model checking (SMC) Uncertainty |
title | Quantitative Performance Evaluation of Uncertainty-Aware Hybrid AADL Designs Using Statistical Model Checking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A55%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20Performance%20Evaluation%20of%20Uncertainty-Aware%20Hybrid%20AADL%20Designs%20Using%20Statistical%20Model%20Checking&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Yongxiang%20Bao&rft.date=2017-12&rft.volume=36&rft.issue=12&rft.spage=1989&rft.epage=2002&rft.pages=1989-2002&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2017.2681076&rft_dat=%3Chal_RIE%3Eoai_HAL_hal_01644285v1%3C/hal_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7875425&rfr_iscdi=true |