Quantitative Performance Evaluation of Uncertainty-Aware Hybrid AADL Designs Using Statistical Model Checking

The hybrid architecture analysis and design language (AADL) has been proposed to model the interactions between embedded control systems and continuous physical environment. However, the worst-case performance analysis of hybrid AADL designs often leads to overly pessimistic estimations, and is not...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 2017-12, Vol.36 (12), p.1989-2002
Hauptverfasser: Yongxiang Bao, Mingsong Chen, Qi Zhu, Tongquan Wei, Mallet, Frederic, Tingliang Zhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2002
container_issue 12
container_start_page 1989
container_title IEEE transactions on computer-aided design of integrated circuits and systems
container_volume 36
creator Yongxiang Bao
Mingsong Chen
Qi Zhu
Tongquan Wei
Mallet, Frederic
Tingliang Zhou
description The hybrid architecture analysis and design language (AADL) has been proposed to model the interactions between embedded control systems and continuous physical environment. However, the worst-case performance analysis of hybrid AADL designs often leads to overly pessimistic estimations, and is not suitable for accurate reasoning about overall system performance, in particular when the system closely interacts with an uncertain external environment. To address this challenge, this paper proposes a statistical model checking-based framework that can perform quantitative evaluation of uncertainty-aware hybrid AADL designs against various performance queries. Our approach extends hybrid AADL to support the modeling of environment uncertainties. Furthermore, we propose a set of transformation rules that can automatically translate AADL designs together with designers' requirements into networks of priced timed automata and performance queries, respectively. Comprehensive experimental results on the movement authority scenario of Chinese train control system level 3 demonstrate the effectiveness of our approach.
doi_str_mv 10.1109/TCAD.2017.2681076
format Article
fullrecord <record><control><sourceid>hal_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCAD_2017_2681076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7875425</ieee_id><sourcerecordid>oai_HAL_hal_01644285v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-ad6e1c64f5813154d96d80d8d6171415fc618beffdfa3d961f7ae130967f11b43</originalsourceid><addsrcrecordid>eNo9kE1LwzAYx4MoOKcfQLzk6qEzT5sm6bF00wkVFbdzyJpki3atJN1k396WjZ0e-L_B80PoHsgEgGRPiyKfTmICfBIzAYSzCzSCLOERhRQu0YjEXESEcHKNbkL4JgRoGmcjtP3cqaZznerc3uAP423rt6qpDJ7tVb3r5bbBrcXLXvKdck13iPI_5Q2eH1beaZzn0xJPTXDrJuBlcM0afw1roXOVqvFbq02Ni42pfnrrFl1ZVQdzd7pjtHyeLYp5VL6_vBZ5GVUJjbtIaWagYtSmAhJIqc6YFkQLzYBD_5CtGIiVsVZblfQmWK4MJCRj3AKsaDJGj8fdjarlr3db5Q-yVU7O81IOGgFGaSzSPfRZOGYr34bgjT0XgMiBrRzYyoGtPLHtOw_HjjPGnPNc8JTGafIPgTd1vw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantitative Performance Evaluation of Uncertainty-Aware Hybrid AADL Designs Using Statistical Model Checking</title><source>IEEE Electronic Library (IEL)</source><creator>Yongxiang Bao ; Mingsong Chen ; Qi Zhu ; Tongquan Wei ; Mallet, Frederic ; Tingliang Zhou</creator><creatorcontrib>Yongxiang Bao ; Mingsong Chen ; Qi Zhu ; Tongquan Wei ; Mallet, Frederic ; Tingliang Zhou</creatorcontrib><description>The hybrid architecture analysis and design language (AADL) has been proposed to model the interactions between embedded control systems and continuous physical environment. However, the worst-case performance analysis of hybrid AADL designs often leads to overly pessimistic estimations, and is not suitable for accurate reasoning about overall system performance, in particular when the system closely interacts with an uncertain external environment. To address this challenge, this paper proposes a statistical model checking-based framework that can perform quantitative evaluation of uncertainty-aware hybrid AADL designs against various performance queries. Our approach extends hybrid AADL to support the modeling of environment uncertainties. Furthermore, we propose a set of transformation rules that can automatically translate AADL designs together with designers' requirements into networks of priced timed automata and performance queries, respectively. Comprehensive experimental results on the movement authority scenario of Chinese train control system level 3 demonstrate the effectiveness of our approach.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2017.2681076</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Computational modeling ; Computer architecture ; Computer Science ; Embedded Systems ; Hybrid architecture analysis and design language (AADL) ; Model checking ; Ports (Computers) ; quantitative performance evaluation ; Statistical analysis ; statistical model checking (SMC) ; Uncertainty</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2017-12, Vol.36 (12), p.1989-2002</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-ad6e1c64f5813154d96d80d8d6171415fc618beffdfa3d961f7ae130967f11b43</citedby><cites>FETCH-LOGICAL-c342t-ad6e1c64f5813154d96d80d8d6171415fc618beffdfa3d961f7ae130967f11b43</cites><orcidid>0000-0002-9088-9821</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7875425$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7875425$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://inria.hal.science/hal-01644285$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yongxiang Bao</creatorcontrib><creatorcontrib>Mingsong Chen</creatorcontrib><creatorcontrib>Qi Zhu</creatorcontrib><creatorcontrib>Tongquan Wei</creatorcontrib><creatorcontrib>Mallet, Frederic</creatorcontrib><creatorcontrib>Tingliang Zhou</creatorcontrib><title>Quantitative Performance Evaluation of Uncertainty-Aware Hybrid AADL Designs Using Statistical Model Checking</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>The hybrid architecture analysis and design language (AADL) has been proposed to model the interactions between embedded control systems and continuous physical environment. However, the worst-case performance analysis of hybrid AADL designs often leads to overly pessimistic estimations, and is not suitable for accurate reasoning about overall system performance, in particular when the system closely interacts with an uncertain external environment. To address this challenge, this paper proposes a statistical model checking-based framework that can perform quantitative evaluation of uncertainty-aware hybrid AADL designs against various performance queries. Our approach extends hybrid AADL to support the modeling of environment uncertainties. Furthermore, we propose a set of transformation rules that can automatically translate AADL designs together with designers' requirements into networks of priced timed automata and performance queries, respectively. Comprehensive experimental results on the movement authority scenario of Chinese train control system level 3 demonstrate the effectiveness of our approach.</description><subject>Analytical models</subject><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Computer Science</subject><subject>Embedded Systems</subject><subject>Hybrid architecture analysis and design language (AADL)</subject><subject>Model checking</subject><subject>Ports (Computers)</subject><subject>quantitative performance evaluation</subject><subject>Statistical analysis</subject><subject>statistical model checking (SMC)</subject><subject>Uncertainty</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LwzAYx4MoOKcfQLzk6qEzT5sm6bF00wkVFbdzyJpki3atJN1k396WjZ0e-L_B80PoHsgEgGRPiyKfTmICfBIzAYSzCzSCLOERhRQu0YjEXESEcHKNbkL4JgRoGmcjtP3cqaZznerc3uAP423rt6qpDJ7tVb3r5bbBrcXLXvKdck13iPI_5Q2eH1beaZzn0xJPTXDrJuBlcM0afw1roXOVqvFbq02Ni42pfnrrFl1ZVQdzd7pjtHyeLYp5VL6_vBZ5GVUJjbtIaWagYtSmAhJIqc6YFkQLzYBD_5CtGIiVsVZblfQmWK4MJCRj3AKsaDJGj8fdjarlr3db5Q-yVU7O81IOGgFGaSzSPfRZOGYr34bgjT0XgMiBrRzYyoGtPLHtOw_HjjPGnPNc8JTGafIPgTd1vw</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Yongxiang Bao</creator><creator>Mingsong Chen</creator><creator>Qi Zhu</creator><creator>Tongquan Wei</creator><creator>Mallet, Frederic</creator><creator>Tingliang Zhou</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9088-9821</orcidid></search><sort><creationdate>201712</creationdate><title>Quantitative Performance Evaluation of Uncertainty-Aware Hybrid AADL Designs Using Statistical Model Checking</title><author>Yongxiang Bao ; Mingsong Chen ; Qi Zhu ; Tongquan Wei ; Mallet, Frederic ; Tingliang Zhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-ad6e1c64f5813154d96d80d8d6171415fc618beffdfa3d961f7ae130967f11b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analytical models</topic><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Computer Science</topic><topic>Embedded Systems</topic><topic>Hybrid architecture analysis and design language (AADL)</topic><topic>Model checking</topic><topic>Ports (Computers)</topic><topic>quantitative performance evaluation</topic><topic>Statistical analysis</topic><topic>statistical model checking (SMC)</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yongxiang Bao</creatorcontrib><creatorcontrib>Mingsong Chen</creatorcontrib><creatorcontrib>Qi Zhu</creatorcontrib><creatorcontrib>Tongquan Wei</creatorcontrib><creatorcontrib>Mallet, Frederic</creatorcontrib><creatorcontrib>Tingliang Zhou</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yongxiang Bao</au><au>Mingsong Chen</au><au>Qi Zhu</au><au>Tongquan Wei</au><au>Mallet, Frederic</au><au>Tingliang Zhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative Performance Evaluation of Uncertainty-Aware Hybrid AADL Designs Using Statistical Model Checking</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2017-12</date><risdate>2017</risdate><volume>36</volume><issue>12</issue><spage>1989</spage><epage>2002</epage><pages>1989-2002</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>The hybrid architecture analysis and design language (AADL) has been proposed to model the interactions between embedded control systems and continuous physical environment. However, the worst-case performance analysis of hybrid AADL designs often leads to overly pessimistic estimations, and is not suitable for accurate reasoning about overall system performance, in particular when the system closely interacts with an uncertain external environment. To address this challenge, this paper proposes a statistical model checking-based framework that can perform quantitative evaluation of uncertainty-aware hybrid AADL designs against various performance queries. Our approach extends hybrid AADL to support the modeling of environment uncertainties. Furthermore, we propose a set of transformation rules that can automatically translate AADL designs together with designers' requirements into networks of priced timed automata and performance queries, respectively. Comprehensive experimental results on the movement authority scenario of Chinese train control system level 3 demonstrate the effectiveness of our approach.</abstract><pub>IEEE</pub><doi>10.1109/TCAD.2017.2681076</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9088-9821</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0070
ispartof IEEE transactions on computer-aided design of integrated circuits and systems, 2017-12, Vol.36 (12), p.1989-2002
issn 0278-0070
1937-4151
language eng
recordid cdi_crossref_primary_10_1109_TCAD_2017_2681076
source IEEE Electronic Library (IEL)
subjects Analytical models
Computational modeling
Computer architecture
Computer Science
Embedded Systems
Hybrid architecture analysis and design language (AADL)
Model checking
Ports (Computers)
quantitative performance evaluation
Statistical analysis
statistical model checking (SMC)
Uncertainty
title Quantitative Performance Evaluation of Uncertainty-Aware Hybrid AADL Designs Using Statistical Model Checking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A55%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20Performance%20Evaluation%20of%20Uncertainty-Aware%20Hybrid%20AADL%20Designs%20Using%20Statistical%20Model%20Checking&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Yongxiang%20Bao&rft.date=2017-12&rft.volume=36&rft.issue=12&rft.spage=1989&rft.epage=2002&rft.pages=1989-2002&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2017.2681076&rft_dat=%3Chal_RIE%3Eoai_HAL_hal_01644285v1%3C/hal_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7875425&rfr_iscdi=true