Tensor Computation: A New Framework for High-Dimensional Problems in EDA
Many critical electronic design automation (EDA) problems suffer from the curse of dimensionality, i.e., the very fast-scaling computational burden produced by large number of parameters and/or unknown variables. This phenomenon may be caused by multiple spatial or temporal factors (e.g., 3-D field...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computer-aided design of integrated circuits and systems 2017-04, Vol.36 (4), p.521-536 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 536 |
---|---|
container_issue | 4 |
container_start_page | 521 |
container_title | IEEE transactions on computer-aided design of integrated circuits and systems |
container_volume | 36 |
creator | Zheng Zhang Batselier, Kim Haotian Liu Daniel, Luca Ngai Wong |
description | Many critical electronic design automation (EDA) problems suffer from the curse of dimensionality, i.e., the very fast-scaling computational burden produced by large number of parameters and/or unknown variables. This phenomenon may be caused by multiple spatial or temporal factors (e.g., 3-D field solvers discretizations and multirate circuit simulation), nonlinearity of devices and circuits, large number of design or optimization parameters (e.g., full-chip routing/placement and circuit sizing), or extensive process variations (e.g., variability /reliability analysis and design for manufacturability). The computational challenges generated by such high-dimensional problems are generally hard to handle efficiently with traditional EDA core algorithms that are based on matrix and vector computation. This paper presents "tensor computation" as an alternative general framework for the development of efficient EDA algorithms and tools. A tensor is a high-dimensional generalization of a matrix and a vector, and is a natural choice for both storing and solving efficiently high-dimensional EDA problems. This paper gives a basic tutorial on tensors, demonstrates some recent examples of EDA applications (e.g., nonlinear circuit modeling and high-dimensional uncertainty quantification), and suggests further open EDA problems where the use of tensor computation could be of advantage. |
doi_str_mv | 10.1109/TCAD.2016.2618879 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCAD_2016_2618879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7593292</ieee_id><sourcerecordid>10_1109_TCAD_2016_2618879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-f90f08d344d71bb16bfeb13fdfbd78645096e4d5ded19c87bf12c4ef2159f4bd3</originalsourceid><addsrcrecordid>eNo9kLFOwzAURS0EEqHwAYjFP5Dynu3ENluUthSpAoYyR3FsQ6BpKruo4u-bqBXTXc65wyHkHmGKCPpxXRazKQPMpyxHpaS-IAlqLlOBGV6SBJhUKYCEa3IT4zcAiozphCzXbhv7QMu-2_3u633bb59oQV_dgS5C3blDH36oH4Bl-_mVztpuwAem3tD30JuN6yJtt3Q-K27Jla830d2dd0I-FvN1uUxXb88vZbFKGw5qn3oNHpTlQliJxmBuvDPIvfXGSpWLDHTuhM2ss6gbJY1H1gjnGWbaC2P5hODptwl9jMH5ahfarg5_FUI1pqjGFNWYojqnGJyHk9M65_55mWnONONHIlZaiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tensor Computation: A New Framework for High-Dimensional Problems in EDA</title><source>IEEE Electronic Library (IEL)</source><creator>Zheng Zhang ; Batselier, Kim ; Haotian Liu ; Daniel, Luca ; Ngai Wong</creator><creatorcontrib>Zheng Zhang ; Batselier, Kim ; Haotian Liu ; Daniel, Luca ; Ngai Wong</creatorcontrib><description>Many critical electronic design automation (EDA) problems suffer from the curse of dimensionality, i.e., the very fast-scaling computational burden produced by large number of parameters and/or unknown variables. This phenomenon may be caused by multiple spatial or temporal factors (e.g., 3-D field solvers discretizations and multirate circuit simulation), nonlinearity of devices and circuits, large number of design or optimization parameters (e.g., full-chip routing/placement and circuit sizing), or extensive process variations (e.g., variability /reliability analysis and design for manufacturability). The computational challenges generated by such high-dimensional problems are generally hard to handle efficiently with traditional EDA core algorithms that are based on matrix and vector computation. This paper presents "tensor computation" as an alternative general framework for the development of efficient EDA algorithms and tools. A tensor is a high-dimensional generalization of a matrix and a vector, and is a natural choice for both storing and solving efficiently high-dimensional EDA problems. This paper gives a basic tutorial on tensors, demonstrates some recent examples of EDA applications (e.g., nonlinear circuit modeling and high-dimensional uncertainty quantification), and suggests further open EDA problems where the use of tensor computation could be of advantage.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2016.2618879</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Circuit simulation ; Computational modeling ; Design optimization ; Integrated circuit modeling ; Mathematical model ; model order reduction ; modeling and simulation ; Numerical models ; process variation ; Tensile stress ; tensor ; tensor completion ; tensor decomposition ; uncertainty quantification</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2017-04, Vol.36 (4), p.521-536</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-f90f08d344d71bb16bfeb13fdfbd78645096e4d5ded19c87bf12c4ef2159f4bd3</citedby><cites>FETCH-LOGICAL-c308t-f90f08d344d71bb16bfeb13fdfbd78645096e4d5ded19c87bf12c4ef2159f4bd3</cites><orcidid>0000-0002-2292-0030</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7593292$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7593292$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zheng Zhang</creatorcontrib><creatorcontrib>Batselier, Kim</creatorcontrib><creatorcontrib>Haotian Liu</creatorcontrib><creatorcontrib>Daniel, Luca</creatorcontrib><creatorcontrib>Ngai Wong</creatorcontrib><title>Tensor Computation: A New Framework for High-Dimensional Problems in EDA</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>Many critical electronic design automation (EDA) problems suffer from the curse of dimensionality, i.e., the very fast-scaling computational burden produced by large number of parameters and/or unknown variables. This phenomenon may be caused by multiple spatial or temporal factors (e.g., 3-D field solvers discretizations and multirate circuit simulation), nonlinearity of devices and circuits, large number of design or optimization parameters (e.g., full-chip routing/placement and circuit sizing), or extensive process variations (e.g., variability /reliability analysis and design for manufacturability). The computational challenges generated by such high-dimensional problems are generally hard to handle efficiently with traditional EDA core algorithms that are based on matrix and vector computation. This paper presents "tensor computation" as an alternative general framework for the development of efficient EDA algorithms and tools. A tensor is a high-dimensional generalization of a matrix and a vector, and is a natural choice for both storing and solving efficiently high-dimensional EDA problems. This paper gives a basic tutorial on tensors, demonstrates some recent examples of EDA applications (e.g., nonlinear circuit modeling and high-dimensional uncertainty quantification), and suggests further open EDA problems where the use of tensor computation could be of advantage.</description><subject>Algorithm design and analysis</subject><subject>Circuit simulation</subject><subject>Computational modeling</subject><subject>Design optimization</subject><subject>Integrated circuit modeling</subject><subject>Mathematical model</subject><subject>model order reduction</subject><subject>modeling and simulation</subject><subject>Numerical models</subject><subject>process variation</subject><subject>Tensile stress</subject><subject>tensor</subject><subject>tensor completion</subject><subject>tensor decomposition</subject><subject>uncertainty quantification</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kLFOwzAURS0EEqHwAYjFP5Dynu3ENluUthSpAoYyR3FsQ6BpKruo4u-bqBXTXc65wyHkHmGKCPpxXRazKQPMpyxHpaS-IAlqLlOBGV6SBJhUKYCEa3IT4zcAiozphCzXbhv7QMu-2_3u633bb59oQV_dgS5C3blDH36oH4Bl-_mVztpuwAem3tD30JuN6yJtt3Q-K27Jla830d2dd0I-FvN1uUxXb88vZbFKGw5qn3oNHpTlQliJxmBuvDPIvfXGSpWLDHTuhM2ss6gbJY1H1gjnGWbaC2P5hODptwl9jMH5ahfarg5_FUI1pqjGFNWYojqnGJyHk9M65_55mWnONONHIlZaiw</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Zheng Zhang</creator><creator>Batselier, Kim</creator><creator>Haotian Liu</creator><creator>Daniel, Luca</creator><creator>Ngai Wong</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2292-0030</orcidid></search><sort><creationdate>201704</creationdate><title>Tensor Computation: A New Framework for High-Dimensional Problems in EDA</title><author>Zheng Zhang ; Batselier, Kim ; Haotian Liu ; Daniel, Luca ; Ngai Wong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-f90f08d344d71bb16bfeb13fdfbd78645096e4d5ded19c87bf12c4ef2159f4bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithm design and analysis</topic><topic>Circuit simulation</topic><topic>Computational modeling</topic><topic>Design optimization</topic><topic>Integrated circuit modeling</topic><topic>Mathematical model</topic><topic>model order reduction</topic><topic>modeling and simulation</topic><topic>Numerical models</topic><topic>process variation</topic><topic>Tensile stress</topic><topic>tensor</topic><topic>tensor completion</topic><topic>tensor decomposition</topic><topic>uncertainty quantification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng Zhang</creatorcontrib><creatorcontrib>Batselier, Kim</creatorcontrib><creatorcontrib>Haotian Liu</creatorcontrib><creatorcontrib>Daniel, Luca</creatorcontrib><creatorcontrib>Ngai Wong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zheng Zhang</au><au>Batselier, Kim</au><au>Haotian Liu</au><au>Daniel, Luca</au><au>Ngai Wong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tensor Computation: A New Framework for High-Dimensional Problems in EDA</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2017-04</date><risdate>2017</risdate><volume>36</volume><issue>4</issue><spage>521</spage><epage>536</epage><pages>521-536</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>Many critical electronic design automation (EDA) problems suffer from the curse of dimensionality, i.e., the very fast-scaling computational burden produced by large number of parameters and/or unknown variables. This phenomenon may be caused by multiple spatial or temporal factors (e.g., 3-D field solvers discretizations and multirate circuit simulation), nonlinearity of devices and circuits, large number of design or optimization parameters (e.g., full-chip routing/placement and circuit sizing), or extensive process variations (e.g., variability /reliability analysis and design for manufacturability). The computational challenges generated by such high-dimensional problems are generally hard to handle efficiently with traditional EDA core algorithms that are based on matrix and vector computation. This paper presents "tensor computation" as an alternative general framework for the development of efficient EDA algorithms and tools. A tensor is a high-dimensional generalization of a matrix and a vector, and is a natural choice for both storing and solving efficiently high-dimensional EDA problems. This paper gives a basic tutorial on tensors, demonstrates some recent examples of EDA applications (e.g., nonlinear circuit modeling and high-dimensional uncertainty quantification), and suggests further open EDA problems where the use of tensor computation could be of advantage.</abstract><pub>IEEE</pub><doi>10.1109/TCAD.2016.2618879</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2292-0030</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0070 |
ispartof | IEEE transactions on computer-aided design of integrated circuits and systems, 2017-04, Vol.36 (4), p.521-536 |
issn | 0278-0070 1937-4151 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCAD_2016_2618879 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Circuit simulation Computational modeling Design optimization Integrated circuit modeling Mathematical model model order reduction modeling and simulation Numerical models process variation Tensile stress tensor tensor completion tensor decomposition uncertainty quantification |
title | Tensor Computation: A New Framework for High-Dimensional Problems in EDA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A34%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tensor%20Computation:%20A%20New%20Framework%20for%20High-Dimensional%20Problems%20in%20EDA&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Zheng%20Zhang&rft.date=2017-04&rft.volume=36&rft.issue=4&rft.spage=521&rft.epage=536&rft.pages=521-536&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2016.2618879&rft_dat=%3Ccrossref_RIE%3E10_1109_TCAD_2016_2618879%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7593292&rfr_iscdi=true |