Tensor Computation: A New Framework for High-Dimensional Problems in EDA

Many critical electronic design automation (EDA) problems suffer from the curse of dimensionality, i.e., the very fast-scaling computational burden produced by large number of parameters and/or unknown variables. This phenomenon may be caused by multiple spatial or temporal factors (e.g., 3-D field...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 2017-04, Vol.36 (4), p.521-536
Hauptverfasser: Zheng Zhang, Batselier, Kim, Haotian Liu, Daniel, Luca, Ngai Wong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 536
container_issue 4
container_start_page 521
container_title IEEE transactions on computer-aided design of integrated circuits and systems
container_volume 36
creator Zheng Zhang
Batselier, Kim
Haotian Liu
Daniel, Luca
Ngai Wong
description Many critical electronic design automation (EDA) problems suffer from the curse of dimensionality, i.e., the very fast-scaling computational burden produced by large number of parameters and/or unknown variables. This phenomenon may be caused by multiple spatial or temporal factors (e.g., 3-D field solvers discretizations and multirate circuit simulation), nonlinearity of devices and circuits, large number of design or optimization parameters (e.g., full-chip routing/placement and circuit sizing), or extensive process variations (e.g., variability /reliability analysis and design for manufacturability). The computational challenges generated by such high-dimensional problems are generally hard to handle efficiently with traditional EDA core algorithms that are based on matrix and vector computation. This paper presents "tensor computation" as an alternative general framework for the development of efficient EDA algorithms and tools. A tensor is a high-dimensional generalization of a matrix and a vector, and is a natural choice for both storing and solving efficiently high-dimensional EDA problems. This paper gives a basic tutorial on tensors, demonstrates some recent examples of EDA applications (e.g., nonlinear circuit modeling and high-dimensional uncertainty quantification), and suggests further open EDA problems where the use of tensor computation could be of advantage.
doi_str_mv 10.1109/TCAD.2016.2618879
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCAD_2016_2618879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7593292</ieee_id><sourcerecordid>10_1109_TCAD_2016_2618879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-f90f08d344d71bb16bfeb13fdfbd78645096e4d5ded19c87bf12c4ef2159f4bd3</originalsourceid><addsrcrecordid>eNo9kLFOwzAURS0EEqHwAYjFP5Dynu3ENluUthSpAoYyR3FsQ6BpKruo4u-bqBXTXc65wyHkHmGKCPpxXRazKQPMpyxHpaS-IAlqLlOBGV6SBJhUKYCEa3IT4zcAiozphCzXbhv7QMu-2_3u633bb59oQV_dgS5C3blDH36oH4Bl-_mVztpuwAem3tD30JuN6yJtt3Q-K27Jla830d2dd0I-FvN1uUxXb88vZbFKGw5qn3oNHpTlQliJxmBuvDPIvfXGSpWLDHTuhM2ss6gbJY1H1gjnGWbaC2P5hODptwl9jMH5ahfarg5_FUI1pqjGFNWYojqnGJyHk9M65_55mWnONONHIlZaiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tensor Computation: A New Framework for High-Dimensional Problems in EDA</title><source>IEEE Electronic Library (IEL)</source><creator>Zheng Zhang ; Batselier, Kim ; Haotian Liu ; Daniel, Luca ; Ngai Wong</creator><creatorcontrib>Zheng Zhang ; Batselier, Kim ; Haotian Liu ; Daniel, Luca ; Ngai Wong</creatorcontrib><description>Many critical electronic design automation (EDA) problems suffer from the curse of dimensionality, i.e., the very fast-scaling computational burden produced by large number of parameters and/or unknown variables. This phenomenon may be caused by multiple spatial or temporal factors (e.g., 3-D field solvers discretizations and multirate circuit simulation), nonlinearity of devices and circuits, large number of design or optimization parameters (e.g., full-chip routing/placement and circuit sizing), or extensive process variations (e.g., variability /reliability analysis and design for manufacturability). The computational challenges generated by such high-dimensional problems are generally hard to handle efficiently with traditional EDA core algorithms that are based on matrix and vector computation. This paper presents "tensor computation" as an alternative general framework for the development of efficient EDA algorithms and tools. A tensor is a high-dimensional generalization of a matrix and a vector, and is a natural choice for both storing and solving efficiently high-dimensional EDA problems. This paper gives a basic tutorial on tensors, demonstrates some recent examples of EDA applications (e.g., nonlinear circuit modeling and high-dimensional uncertainty quantification), and suggests further open EDA problems where the use of tensor computation could be of advantage.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2016.2618879</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Circuit simulation ; Computational modeling ; Design optimization ; Integrated circuit modeling ; Mathematical model ; model order reduction ; modeling and simulation ; Numerical models ; process variation ; Tensile stress ; tensor ; tensor completion ; tensor decomposition ; uncertainty quantification</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2017-04, Vol.36 (4), p.521-536</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-f90f08d344d71bb16bfeb13fdfbd78645096e4d5ded19c87bf12c4ef2159f4bd3</citedby><cites>FETCH-LOGICAL-c308t-f90f08d344d71bb16bfeb13fdfbd78645096e4d5ded19c87bf12c4ef2159f4bd3</cites><orcidid>0000-0002-2292-0030</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7593292$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7593292$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zheng Zhang</creatorcontrib><creatorcontrib>Batselier, Kim</creatorcontrib><creatorcontrib>Haotian Liu</creatorcontrib><creatorcontrib>Daniel, Luca</creatorcontrib><creatorcontrib>Ngai Wong</creatorcontrib><title>Tensor Computation: A New Framework for High-Dimensional Problems in EDA</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>Many critical electronic design automation (EDA) problems suffer from the curse of dimensionality, i.e., the very fast-scaling computational burden produced by large number of parameters and/or unknown variables. This phenomenon may be caused by multiple spatial or temporal factors (e.g., 3-D field solvers discretizations and multirate circuit simulation), nonlinearity of devices and circuits, large number of design or optimization parameters (e.g., full-chip routing/placement and circuit sizing), or extensive process variations (e.g., variability /reliability analysis and design for manufacturability). The computational challenges generated by such high-dimensional problems are generally hard to handle efficiently with traditional EDA core algorithms that are based on matrix and vector computation. This paper presents "tensor computation" as an alternative general framework for the development of efficient EDA algorithms and tools. A tensor is a high-dimensional generalization of a matrix and a vector, and is a natural choice for both storing and solving efficiently high-dimensional EDA problems. This paper gives a basic tutorial on tensors, demonstrates some recent examples of EDA applications (e.g., nonlinear circuit modeling and high-dimensional uncertainty quantification), and suggests further open EDA problems where the use of tensor computation could be of advantage.</description><subject>Algorithm design and analysis</subject><subject>Circuit simulation</subject><subject>Computational modeling</subject><subject>Design optimization</subject><subject>Integrated circuit modeling</subject><subject>Mathematical model</subject><subject>model order reduction</subject><subject>modeling and simulation</subject><subject>Numerical models</subject><subject>process variation</subject><subject>Tensile stress</subject><subject>tensor</subject><subject>tensor completion</subject><subject>tensor decomposition</subject><subject>uncertainty quantification</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kLFOwzAURS0EEqHwAYjFP5Dynu3ENluUthSpAoYyR3FsQ6BpKruo4u-bqBXTXc65wyHkHmGKCPpxXRazKQPMpyxHpaS-IAlqLlOBGV6SBJhUKYCEa3IT4zcAiozphCzXbhv7QMu-2_3u633bb59oQV_dgS5C3blDH36oH4Bl-_mVztpuwAem3tD30JuN6yJtt3Q-K27Jla830d2dd0I-FvN1uUxXb88vZbFKGw5qn3oNHpTlQliJxmBuvDPIvfXGSpWLDHTuhM2ss6gbJY1H1gjnGWbaC2P5hODptwl9jMH5ahfarg5_FUI1pqjGFNWYojqnGJyHk9M65_55mWnONONHIlZaiw</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Zheng Zhang</creator><creator>Batselier, Kim</creator><creator>Haotian Liu</creator><creator>Daniel, Luca</creator><creator>Ngai Wong</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2292-0030</orcidid></search><sort><creationdate>201704</creationdate><title>Tensor Computation: A New Framework for High-Dimensional Problems in EDA</title><author>Zheng Zhang ; Batselier, Kim ; Haotian Liu ; Daniel, Luca ; Ngai Wong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-f90f08d344d71bb16bfeb13fdfbd78645096e4d5ded19c87bf12c4ef2159f4bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithm design and analysis</topic><topic>Circuit simulation</topic><topic>Computational modeling</topic><topic>Design optimization</topic><topic>Integrated circuit modeling</topic><topic>Mathematical model</topic><topic>model order reduction</topic><topic>modeling and simulation</topic><topic>Numerical models</topic><topic>process variation</topic><topic>Tensile stress</topic><topic>tensor</topic><topic>tensor completion</topic><topic>tensor decomposition</topic><topic>uncertainty quantification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng Zhang</creatorcontrib><creatorcontrib>Batselier, Kim</creatorcontrib><creatorcontrib>Haotian Liu</creatorcontrib><creatorcontrib>Daniel, Luca</creatorcontrib><creatorcontrib>Ngai Wong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zheng Zhang</au><au>Batselier, Kim</au><au>Haotian Liu</au><au>Daniel, Luca</au><au>Ngai Wong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tensor Computation: A New Framework for High-Dimensional Problems in EDA</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2017-04</date><risdate>2017</risdate><volume>36</volume><issue>4</issue><spage>521</spage><epage>536</epage><pages>521-536</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>Many critical electronic design automation (EDA) problems suffer from the curse of dimensionality, i.e., the very fast-scaling computational burden produced by large number of parameters and/or unknown variables. This phenomenon may be caused by multiple spatial or temporal factors (e.g., 3-D field solvers discretizations and multirate circuit simulation), nonlinearity of devices and circuits, large number of design or optimization parameters (e.g., full-chip routing/placement and circuit sizing), or extensive process variations (e.g., variability /reliability analysis and design for manufacturability). The computational challenges generated by such high-dimensional problems are generally hard to handle efficiently with traditional EDA core algorithms that are based on matrix and vector computation. This paper presents "tensor computation" as an alternative general framework for the development of efficient EDA algorithms and tools. A tensor is a high-dimensional generalization of a matrix and a vector, and is a natural choice for both storing and solving efficiently high-dimensional EDA problems. This paper gives a basic tutorial on tensors, demonstrates some recent examples of EDA applications (e.g., nonlinear circuit modeling and high-dimensional uncertainty quantification), and suggests further open EDA problems where the use of tensor computation could be of advantage.</abstract><pub>IEEE</pub><doi>10.1109/TCAD.2016.2618879</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2292-0030</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0070
ispartof IEEE transactions on computer-aided design of integrated circuits and systems, 2017-04, Vol.36 (4), p.521-536
issn 0278-0070
1937-4151
language eng
recordid cdi_crossref_primary_10_1109_TCAD_2016_2618879
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Circuit simulation
Computational modeling
Design optimization
Integrated circuit modeling
Mathematical model
model order reduction
modeling and simulation
Numerical models
process variation
Tensile stress
tensor
tensor completion
tensor decomposition
uncertainty quantification
title Tensor Computation: A New Framework for High-Dimensional Problems in EDA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A34%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tensor%20Computation:%20A%20New%20Framework%20for%20High-Dimensional%20Problems%20in%20EDA&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Zheng%20Zhang&rft.date=2017-04&rft.volume=36&rft.issue=4&rft.spage=521&rft.epage=536&rft.pages=521-536&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2016.2618879&rft_dat=%3Ccrossref_RIE%3E10_1109_TCAD_2016_2618879%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7593292&rfr_iscdi=true