Reactant Minimization in Sample Preparation on Digital Microfluidic Biochips

Sample preparation plays an essential role in most biochemical reactions. Raw reactants are diluted to solutions with desirable concentration values in this process. Since the reactants, like infant's blood, DNA evidence collected from crime scenes, or costly reagents, are extremely valuable, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 2015-09, Vol.34 (9), p.1429-1440
Hauptverfasser: Liu, Chia-Hung, Chiang, Ting-Wei, Huang, Juinn-Dar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1440
container_issue 9
container_start_page 1429
container_title IEEE transactions on computer-aided design of integrated circuits and systems
container_volume 34
creator Liu, Chia-Hung
Chiang, Ting-Wei
Huang, Juinn-Dar
description Sample preparation plays an essential role in most biochemical reactions. Raw reactants are diluted to solutions with desirable concentration values in this process. Since the reactants, like infant's blood, DNA evidence collected from crime scenes, or costly reagents, are extremely valuable, their usage should be minimized whenever possible. In this paper, we propose a two-phased reactant minimization algorithm (REMIA), for sample preparation on digital microfluidic biochips. In the former phase, REMIA builds a reactant-minimized interpolated dilution tree with specific leaf nodes for a target concentration. Two approaches are developed for tree construction; one is based on integer linear programming (ILP) and the other is heuristic. The ILP one guarantees to produce an optimal dilution tree with minimal reactant consumption, whereas the heuristic one ensures runtime efficiency. Then, REMIA constructs a forest consisting of exponential dilution trees to produce those aforementioned specific leaf nodes with minimal reactant consumption in the latter phase. Experimental results show that REMIA achieves a reduction of reactant usage by 32%-52% as compared with three existing state-of-the-art sample preparation approaches. Besides, REMIA can be easily extended to solve the sample preparation problem with multiple target concentrations, and the extended version also effectively lowers the reactant consumption further.
doi_str_mv 10.1109/TCAD.2015.2418286
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCAD_2015_2418286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7076584</ieee_id><sourcerecordid>10_1109_TCAD_2015_2418286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-879192c480ede9dc62ab87b920ee9bb680703a0447f2131cdd9a5e8f8984b8c33</originalsourceid><addsrcrecordid>eNo9kM1KxEAQhAdRcF19APGSF0jsnkwyM8c16x9EFF3PYTLpaEs2CUk86NObZRehoaCpKopPiEuECBHs9SZbrSMJmERSoZEmPRILtLEOFSZ4LBYgtQkBNJyKs3H8AkCVSLsQ-Ss5P7l2Cp645S3_uom7NuA2eHPbvqHgZaDeDfvvfGv-4Mk1s9sPXd18c8U-uOHOf3I_nouT2jUjXRx0Kd7vbjfZQ5g_3z9mqzz0cYxTaLRFK70yQBXZyqfSlUaXVgKRLcvUzDNjB0rpWmKMvqqsS8jUxhpVmrljKXDfO28Yx4Hqoh9464afAqHY4Sh2OIodjuKAY85c7TNMRP9-DTpNjIr_AFayXCI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reactant Minimization in Sample Preparation on Digital Microfluidic Biochips</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Chia-Hung ; Chiang, Ting-Wei ; Huang, Juinn-Dar</creator><creatorcontrib>Liu, Chia-Hung ; Chiang, Ting-Wei ; Huang, Juinn-Dar</creatorcontrib><description>Sample preparation plays an essential role in most biochemical reactions. Raw reactants are diluted to solutions with desirable concentration values in this process. Since the reactants, like infant's blood, DNA evidence collected from crime scenes, or costly reagents, are extremely valuable, their usage should be minimized whenever possible. In this paper, we propose a two-phased reactant minimization algorithm (REMIA), for sample preparation on digital microfluidic biochips. In the former phase, REMIA builds a reactant-minimized interpolated dilution tree with specific leaf nodes for a target concentration. Two approaches are developed for tree construction; one is based on integer linear programming (ILP) and the other is heuristic. The ILP one guarantees to produce an optimal dilution tree with minimal reactant consumption, whereas the heuristic one ensures runtime efficiency. Then, REMIA constructs a forest consisting of exponential dilution trees to produce those aforementioned specific leaf nodes with minimal reactant consumption in the latter phase. Experimental results show that REMIA achieves a reduction of reactant usage by 32%-52% as compared with three existing state-of-the-art sample preparation approaches. Besides, REMIA can be easily extended to solve the sample preparation problem with multiple target concentrations, and the extended version also effectively lowers the reactant consumption further.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2015.2418286</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Biochip ; digital microfluidic biochip (DMFB) ; dilution ; dilution tree ; Electronic mail ; Materials ; Microfluidics ; Minimization ; Optimization ; reactant minimization ; sample preparation ; Vegetation</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2015-09, Vol.34 (9), p.1429-1440</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-879192c480ede9dc62ab87b920ee9bb680703a0447f2131cdd9a5e8f8984b8c33</citedby><cites>FETCH-LOGICAL-c331t-879192c480ede9dc62ab87b920ee9bb680703a0447f2131cdd9a5e8f8984b8c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7076584$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7076584$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Chia-Hung</creatorcontrib><creatorcontrib>Chiang, Ting-Wei</creatorcontrib><creatorcontrib>Huang, Juinn-Dar</creatorcontrib><title>Reactant Minimization in Sample Preparation on Digital Microfluidic Biochips</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>Sample preparation plays an essential role in most biochemical reactions. Raw reactants are diluted to solutions with desirable concentration values in this process. Since the reactants, like infant's blood, DNA evidence collected from crime scenes, or costly reagents, are extremely valuable, their usage should be minimized whenever possible. In this paper, we propose a two-phased reactant minimization algorithm (REMIA), for sample preparation on digital microfluidic biochips. In the former phase, REMIA builds a reactant-minimized interpolated dilution tree with specific leaf nodes for a target concentration. Two approaches are developed for tree construction; one is based on integer linear programming (ILP) and the other is heuristic. The ILP one guarantees to produce an optimal dilution tree with minimal reactant consumption, whereas the heuristic one ensures runtime efficiency. Then, REMIA constructs a forest consisting of exponential dilution trees to produce those aforementioned specific leaf nodes with minimal reactant consumption in the latter phase. Experimental results show that REMIA achieves a reduction of reactant usage by 32%-52% as compared with three existing state-of-the-art sample preparation approaches. Besides, REMIA can be easily extended to solve the sample preparation problem with multiple target concentrations, and the extended version also effectively lowers the reactant consumption further.</description><subject>Algorithm design and analysis</subject><subject>Biochip</subject><subject>digital microfluidic biochip (DMFB)</subject><subject>dilution</subject><subject>dilution tree</subject><subject>Electronic mail</subject><subject>Materials</subject><subject>Microfluidics</subject><subject>Minimization</subject><subject>Optimization</subject><subject>reactant minimization</subject><subject>sample preparation</subject><subject>Vegetation</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1KxEAQhAdRcF19APGSF0jsnkwyM8c16x9EFF3PYTLpaEs2CUk86NObZRehoaCpKopPiEuECBHs9SZbrSMJmERSoZEmPRILtLEOFSZ4LBYgtQkBNJyKs3H8AkCVSLsQ-Ss5P7l2Cp645S3_uom7NuA2eHPbvqHgZaDeDfvvfGv-4Mk1s9sPXd18c8U-uOHOf3I_nouT2jUjXRx0Kd7vbjfZQ5g_3z9mqzz0cYxTaLRFK70yQBXZyqfSlUaXVgKRLcvUzDNjB0rpWmKMvqqsS8jUxhpVmrljKXDfO28Yx4Hqoh9464afAqHY4Sh2OIodjuKAY85c7TNMRP9-DTpNjIr_AFayXCI</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Liu, Chia-Hung</creator><creator>Chiang, Ting-Wei</creator><creator>Huang, Juinn-Dar</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201509</creationdate><title>Reactant Minimization in Sample Preparation on Digital Microfluidic Biochips</title><author>Liu, Chia-Hung ; Chiang, Ting-Wei ; Huang, Juinn-Dar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-879192c480ede9dc62ab87b920ee9bb680703a0447f2131cdd9a5e8f8984b8c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithm design and analysis</topic><topic>Biochip</topic><topic>digital microfluidic biochip (DMFB)</topic><topic>dilution</topic><topic>dilution tree</topic><topic>Electronic mail</topic><topic>Materials</topic><topic>Microfluidics</topic><topic>Minimization</topic><topic>Optimization</topic><topic>reactant minimization</topic><topic>sample preparation</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Chia-Hung</creatorcontrib><creatorcontrib>Chiang, Ting-Wei</creatorcontrib><creatorcontrib>Huang, Juinn-Dar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Chia-Hung</au><au>Chiang, Ting-Wei</au><au>Huang, Juinn-Dar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reactant Minimization in Sample Preparation on Digital Microfluidic Biochips</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2015-09</date><risdate>2015</risdate><volume>34</volume><issue>9</issue><spage>1429</spage><epage>1440</epage><pages>1429-1440</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>Sample preparation plays an essential role in most biochemical reactions. Raw reactants are diluted to solutions with desirable concentration values in this process. Since the reactants, like infant's blood, DNA evidence collected from crime scenes, or costly reagents, are extremely valuable, their usage should be minimized whenever possible. In this paper, we propose a two-phased reactant minimization algorithm (REMIA), for sample preparation on digital microfluidic biochips. In the former phase, REMIA builds a reactant-minimized interpolated dilution tree with specific leaf nodes for a target concentration. Two approaches are developed for tree construction; one is based on integer linear programming (ILP) and the other is heuristic. The ILP one guarantees to produce an optimal dilution tree with minimal reactant consumption, whereas the heuristic one ensures runtime efficiency. Then, REMIA constructs a forest consisting of exponential dilution trees to produce those aforementioned specific leaf nodes with minimal reactant consumption in the latter phase. Experimental results show that REMIA achieves a reduction of reactant usage by 32%-52% as compared with three existing state-of-the-art sample preparation approaches. Besides, REMIA can be easily extended to solve the sample preparation problem with multiple target concentrations, and the extended version also effectively lowers the reactant consumption further.</abstract><pub>IEEE</pub><doi>10.1109/TCAD.2015.2418286</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0070
ispartof IEEE transactions on computer-aided design of integrated circuits and systems, 2015-09, Vol.34 (9), p.1429-1440
issn 0278-0070
1937-4151
language eng
recordid cdi_crossref_primary_10_1109_TCAD_2015_2418286
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Biochip
digital microfluidic biochip (DMFB)
dilution
dilution tree
Electronic mail
Materials
Microfluidics
Minimization
Optimization
reactant minimization
sample preparation
Vegetation
title Reactant Minimization in Sample Preparation on Digital Microfluidic Biochips
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A31%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reactant%20Minimization%20in%20Sample%20Preparation%20on%20Digital%20Microfluidic%20Biochips&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Liu,%20Chia-Hung&rft.date=2015-09&rft.volume=34&rft.issue=9&rft.spage=1429&rft.epage=1440&rft.pages=1429-1440&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2015.2418286&rft_dat=%3Ccrossref_RIE%3E10_1109_TCAD_2015_2418286%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7076584&rfr_iscdi=true