Reactant Minimization in Sample Preparation on Digital Microfluidic Biochips
Sample preparation plays an essential role in most biochemical reactions. Raw reactants are diluted to solutions with desirable concentration values in this process. Since the reactants, like infant's blood, DNA evidence collected from crime scenes, or costly reagents, are extremely valuable, t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computer-aided design of integrated circuits and systems 2015-09, Vol.34 (9), p.1429-1440 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1440 |
---|---|
container_issue | 9 |
container_start_page | 1429 |
container_title | IEEE transactions on computer-aided design of integrated circuits and systems |
container_volume | 34 |
creator | Liu, Chia-Hung Chiang, Ting-Wei Huang, Juinn-Dar |
description | Sample preparation plays an essential role in most biochemical reactions. Raw reactants are diluted to solutions with desirable concentration values in this process. Since the reactants, like infant's blood, DNA evidence collected from crime scenes, or costly reagents, are extremely valuable, their usage should be minimized whenever possible. In this paper, we propose a two-phased reactant minimization algorithm (REMIA), for sample preparation on digital microfluidic biochips. In the former phase, REMIA builds a reactant-minimized interpolated dilution tree with specific leaf nodes for a target concentration. Two approaches are developed for tree construction; one is based on integer linear programming (ILP) and the other is heuristic. The ILP one guarantees to produce an optimal dilution tree with minimal reactant consumption, whereas the heuristic one ensures runtime efficiency. Then, REMIA constructs a forest consisting of exponential dilution trees to produce those aforementioned specific leaf nodes with minimal reactant consumption in the latter phase. Experimental results show that REMIA achieves a reduction of reactant usage by 32%-52% as compared with three existing state-of-the-art sample preparation approaches. Besides, REMIA can be easily extended to solve the sample preparation problem with multiple target concentrations, and the extended version also effectively lowers the reactant consumption further. |
doi_str_mv | 10.1109/TCAD.2015.2418286 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCAD_2015_2418286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7076584</ieee_id><sourcerecordid>10_1109_TCAD_2015_2418286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-879192c480ede9dc62ab87b920ee9bb680703a0447f2131cdd9a5e8f8984b8c33</originalsourceid><addsrcrecordid>eNo9kM1KxEAQhAdRcF19APGSF0jsnkwyM8c16x9EFF3PYTLpaEs2CUk86NObZRehoaCpKopPiEuECBHs9SZbrSMJmERSoZEmPRILtLEOFSZ4LBYgtQkBNJyKs3H8AkCVSLsQ-Ss5P7l2Cp645S3_uom7NuA2eHPbvqHgZaDeDfvvfGv-4Mk1s9sPXd18c8U-uOHOf3I_nouT2jUjXRx0Kd7vbjfZQ5g_3z9mqzz0cYxTaLRFK70yQBXZyqfSlUaXVgKRLcvUzDNjB0rpWmKMvqqsS8jUxhpVmrljKXDfO28Yx4Hqoh9464afAqHY4Sh2OIodjuKAY85c7TNMRP9-DTpNjIr_AFayXCI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reactant Minimization in Sample Preparation on Digital Microfluidic Biochips</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Chia-Hung ; Chiang, Ting-Wei ; Huang, Juinn-Dar</creator><creatorcontrib>Liu, Chia-Hung ; Chiang, Ting-Wei ; Huang, Juinn-Dar</creatorcontrib><description>Sample preparation plays an essential role in most biochemical reactions. Raw reactants are diluted to solutions with desirable concentration values in this process. Since the reactants, like infant's blood, DNA evidence collected from crime scenes, or costly reagents, are extremely valuable, their usage should be minimized whenever possible. In this paper, we propose a two-phased reactant minimization algorithm (REMIA), for sample preparation on digital microfluidic biochips. In the former phase, REMIA builds a reactant-minimized interpolated dilution tree with specific leaf nodes for a target concentration. Two approaches are developed for tree construction; one is based on integer linear programming (ILP) and the other is heuristic. The ILP one guarantees to produce an optimal dilution tree with minimal reactant consumption, whereas the heuristic one ensures runtime efficiency. Then, REMIA constructs a forest consisting of exponential dilution trees to produce those aforementioned specific leaf nodes with minimal reactant consumption in the latter phase. Experimental results show that REMIA achieves a reduction of reactant usage by 32%-52% as compared with three existing state-of-the-art sample preparation approaches. Besides, REMIA can be easily extended to solve the sample preparation problem with multiple target concentrations, and the extended version also effectively lowers the reactant consumption further.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2015.2418286</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Biochip ; digital microfluidic biochip (DMFB) ; dilution ; dilution tree ; Electronic mail ; Materials ; Microfluidics ; Minimization ; Optimization ; reactant minimization ; sample preparation ; Vegetation</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2015-09, Vol.34 (9), p.1429-1440</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-879192c480ede9dc62ab87b920ee9bb680703a0447f2131cdd9a5e8f8984b8c33</citedby><cites>FETCH-LOGICAL-c331t-879192c480ede9dc62ab87b920ee9bb680703a0447f2131cdd9a5e8f8984b8c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7076584$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7076584$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Chia-Hung</creatorcontrib><creatorcontrib>Chiang, Ting-Wei</creatorcontrib><creatorcontrib>Huang, Juinn-Dar</creatorcontrib><title>Reactant Minimization in Sample Preparation on Digital Microfluidic Biochips</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>Sample preparation plays an essential role in most biochemical reactions. Raw reactants are diluted to solutions with desirable concentration values in this process. Since the reactants, like infant's blood, DNA evidence collected from crime scenes, or costly reagents, are extremely valuable, their usage should be minimized whenever possible. In this paper, we propose a two-phased reactant minimization algorithm (REMIA), for sample preparation on digital microfluidic biochips. In the former phase, REMIA builds a reactant-minimized interpolated dilution tree with specific leaf nodes for a target concentration. Two approaches are developed for tree construction; one is based on integer linear programming (ILP) and the other is heuristic. The ILP one guarantees to produce an optimal dilution tree with minimal reactant consumption, whereas the heuristic one ensures runtime efficiency. Then, REMIA constructs a forest consisting of exponential dilution trees to produce those aforementioned specific leaf nodes with minimal reactant consumption in the latter phase. Experimental results show that REMIA achieves a reduction of reactant usage by 32%-52% as compared with three existing state-of-the-art sample preparation approaches. Besides, REMIA can be easily extended to solve the sample preparation problem with multiple target concentrations, and the extended version also effectively lowers the reactant consumption further.</description><subject>Algorithm design and analysis</subject><subject>Biochip</subject><subject>digital microfluidic biochip (DMFB)</subject><subject>dilution</subject><subject>dilution tree</subject><subject>Electronic mail</subject><subject>Materials</subject><subject>Microfluidics</subject><subject>Minimization</subject><subject>Optimization</subject><subject>reactant minimization</subject><subject>sample preparation</subject><subject>Vegetation</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1KxEAQhAdRcF19APGSF0jsnkwyM8c16x9EFF3PYTLpaEs2CUk86NObZRehoaCpKopPiEuECBHs9SZbrSMJmERSoZEmPRILtLEOFSZ4LBYgtQkBNJyKs3H8AkCVSLsQ-Ss5P7l2Cp645S3_uom7NuA2eHPbvqHgZaDeDfvvfGv-4Mk1s9sPXd18c8U-uOHOf3I_nouT2jUjXRx0Kd7vbjfZQ5g_3z9mqzz0cYxTaLRFK70yQBXZyqfSlUaXVgKRLcvUzDNjB0rpWmKMvqqsS8jUxhpVmrljKXDfO28Yx4Hqoh9464afAqHY4Sh2OIodjuKAY85c7TNMRP9-DTpNjIr_AFayXCI</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Liu, Chia-Hung</creator><creator>Chiang, Ting-Wei</creator><creator>Huang, Juinn-Dar</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201509</creationdate><title>Reactant Minimization in Sample Preparation on Digital Microfluidic Biochips</title><author>Liu, Chia-Hung ; Chiang, Ting-Wei ; Huang, Juinn-Dar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-879192c480ede9dc62ab87b920ee9bb680703a0447f2131cdd9a5e8f8984b8c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithm design and analysis</topic><topic>Biochip</topic><topic>digital microfluidic biochip (DMFB)</topic><topic>dilution</topic><topic>dilution tree</topic><topic>Electronic mail</topic><topic>Materials</topic><topic>Microfluidics</topic><topic>Minimization</topic><topic>Optimization</topic><topic>reactant minimization</topic><topic>sample preparation</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Chia-Hung</creatorcontrib><creatorcontrib>Chiang, Ting-Wei</creatorcontrib><creatorcontrib>Huang, Juinn-Dar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Chia-Hung</au><au>Chiang, Ting-Wei</au><au>Huang, Juinn-Dar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reactant Minimization in Sample Preparation on Digital Microfluidic Biochips</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2015-09</date><risdate>2015</risdate><volume>34</volume><issue>9</issue><spage>1429</spage><epage>1440</epage><pages>1429-1440</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>Sample preparation plays an essential role in most biochemical reactions. Raw reactants are diluted to solutions with desirable concentration values in this process. Since the reactants, like infant's blood, DNA evidence collected from crime scenes, or costly reagents, are extremely valuable, their usage should be minimized whenever possible. In this paper, we propose a two-phased reactant minimization algorithm (REMIA), for sample preparation on digital microfluidic biochips. In the former phase, REMIA builds a reactant-minimized interpolated dilution tree with specific leaf nodes for a target concentration. Two approaches are developed for tree construction; one is based on integer linear programming (ILP) and the other is heuristic. The ILP one guarantees to produce an optimal dilution tree with minimal reactant consumption, whereas the heuristic one ensures runtime efficiency. Then, REMIA constructs a forest consisting of exponential dilution trees to produce those aforementioned specific leaf nodes with minimal reactant consumption in the latter phase. Experimental results show that REMIA achieves a reduction of reactant usage by 32%-52% as compared with three existing state-of-the-art sample preparation approaches. Besides, REMIA can be easily extended to solve the sample preparation problem with multiple target concentrations, and the extended version also effectively lowers the reactant consumption further.</abstract><pub>IEEE</pub><doi>10.1109/TCAD.2015.2418286</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0070 |
ispartof | IEEE transactions on computer-aided design of integrated circuits and systems, 2015-09, Vol.34 (9), p.1429-1440 |
issn | 0278-0070 1937-4151 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCAD_2015_2418286 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Biochip digital microfluidic biochip (DMFB) dilution dilution tree Electronic mail Materials Microfluidics Minimization Optimization reactant minimization sample preparation Vegetation |
title | Reactant Minimization in Sample Preparation on Digital Microfluidic Biochips |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A31%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reactant%20Minimization%20in%20Sample%20Preparation%20on%20Digital%20Microfluidic%20Biochips&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Liu,%20Chia-Hung&rft.date=2015-09&rft.volume=34&rft.issue=9&rft.spage=1429&rft.epage=1440&rft.pages=1429-1440&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2015.2418286&rft_dat=%3Ccrossref_RIE%3E10_1109_TCAD_2015_2418286%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7076584&rfr_iscdi=true |