CATFace: Cross-Attribute-Guided Transformer With Self-Attention Distillation for Low-Quality Face Recognition

Although face recognition (FR) has achieved great success in recent years, it is still challenging to accurately recognize faces in low-quality images due to the obscured facial details. Nevertheless, it is often feasible to make predictions about specific soft biometric (SB) attributes, such as gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on biometrics, behavior, and identity science behavior, and identity science, 2024-01, Vol.6 (1), p.132-146
Hauptverfasser: Alipour Talemi, Niloufar, Kashiani, Hossein, Nasrabadi, Nasser M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 146
container_issue 1
container_start_page 132
container_title IEEE transactions on biometrics, behavior, and identity science
container_volume 6
creator Alipour Talemi, Niloufar
Kashiani, Hossein
Nasrabadi, Nasser M.
description Although face recognition (FR) has achieved great success in recent years, it is still challenging to accurately recognize faces in low-quality images due to the obscured facial details. Nevertheless, it is often feasible to make predictions about specific soft biometric (SB) attributes, such as gender, and baldness even in dealing with low-quality images. In this paper, we propose a novel multi-branch neural network that leverages SB attribute information to boost the performance of FR. To this end, we propose a cross-attribute-guided transformer fusion (CATF) module that effectively captures the long-range dependencies and relationships between FR and SB feature representations. The synergy created by the reciprocal flow of information in the dual cross-attention operations of the proposed CATF module enhances the performance of FR. Furthermore, we introduce a novel self-attention distillation framework that effectively highlights crucial facial regions, such as landmarks by aligning low-quality images with those of their high-quality counterparts in the feature space. The proposed self-attention distillation regularizes our network to learn a unified qualityinvariant feature representation in unconstrained environments. We conduct extensive experiments on various FR benchmarks varying in quality. Experimental results demonstrate the superiority of our FR method compared to state-of-the-art FR studies.
doi_str_mv 10.1109/TBIOM.2023.3349218
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TBIOM_2023_3349218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10380201</ieee_id><sourcerecordid>2948052386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-5ddb4a60bf31c797bdfc7084043dc9c9b3308cdea1c052f07141e3379189e7463</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhosoOOb-gHgR8LozX2sa7-Z0czAZasXLkKanmtG1M0mR_Xtbt4tBIAk873s4TxRdEzwmBMu77GG5fhlTTNmYMS4pSc-iAU2YiBOOxfnJ-zIaeb_BGFPMZXcG0XY2zebawD2aucb7eBqCs3kbIF60toACZU7XvmzcFhz6tOEbvUNV9hjUwTY1erQ-2KrS_5-OQ6vmN35tdWXDHvXN6A1M81XbHriKLkpdeRgd72H0MX_KZs_xar1Yzqar2FAuQjwpipzrBOclI0ZIkRelETjlmLPCSCNzxnBqCtDE4AktsSCcAGNCklSC4AkbRreH3p1rflrwQW2a1tXdSEUlT7sQS3uKHijTr-6gVDtnt9rtFcGqN6v-zarerDqa7UI3h5AFgJMASzuphP0BtPx07A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2948052386</pqid></control><display><type>article</type><title>CATFace: Cross-Attribute-Guided Transformer With Self-Attention Distillation for Low-Quality Face Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Alipour Talemi, Niloufar ; Kashiani, Hossein ; Nasrabadi, Nasser M.</creator><creatorcontrib>Alipour Talemi, Niloufar ; Kashiani, Hossein ; Nasrabadi, Nasser M.</creatorcontrib><description>Although face recognition (FR) has achieved great success in recent years, it is still challenging to accurately recognize faces in low-quality images due to the obscured facial details. Nevertheless, it is often feasible to make predictions about specific soft biometric (SB) attributes, such as gender, and baldness even in dealing with low-quality images. In this paper, we propose a novel multi-branch neural network that leverages SB attribute information to boost the performance of FR. To this end, we propose a cross-attribute-guided transformer fusion (CATF) module that effectively captures the long-range dependencies and relationships between FR and SB feature representations. The synergy created by the reciprocal flow of information in the dual cross-attention operations of the proposed CATF module enhances the performance of FR. Furthermore, we introduce a novel self-attention distillation framework that effectively highlights crucial facial regions, such as landmarks by aligning low-quality images with those of their high-quality counterparts in the feature space. The proposed self-attention distillation regularizes our network to learn a unified qualityinvariant feature representation in unconstrained environments. We conduct extensive experiments on various FR benchmarks varying in quality. Experimental results demonstrate the superiority of our FR method compared to state-of-the-art FR studies.</description><identifier>ISSN: 2637-6407</identifier><identifier>EISSN: 2637-6407</identifier><identifier>DOI: 10.1109/TBIOM.2023.3349218</identifier><identifier>CODEN: ITBBCT</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Attention mechanisms ; Distillation ; Face recognition ; Facial features ; feature fusion ; Generative adversarial networks ; Image quality ; Information flow ; knowledge distillation ; Modules ; Neural networks ; Representations ; self-attention mechanism ; soft biometric attributes ; State-of-the-art reviews ; Training ; Transformers</subject><ispartof>IEEE transactions on biometrics, behavior, and identity science, 2024-01, Vol.6 (1), p.132-146</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-5ddb4a60bf31c797bdfc7084043dc9c9b3308cdea1c052f07141e3379189e7463</cites><orcidid>0009-0000-6881-3671 ; 0000-0001-8730-627X ; 0000-0001-8338-9987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10380201$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10380201$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Alipour Talemi, Niloufar</creatorcontrib><creatorcontrib>Kashiani, Hossein</creatorcontrib><creatorcontrib>Nasrabadi, Nasser M.</creatorcontrib><title>CATFace: Cross-Attribute-Guided Transformer With Self-Attention Distillation for Low-Quality Face Recognition</title><title>IEEE transactions on biometrics, behavior, and identity science</title><addtitle>TBIOM</addtitle><description>Although face recognition (FR) has achieved great success in recent years, it is still challenging to accurately recognize faces in low-quality images due to the obscured facial details. Nevertheless, it is often feasible to make predictions about specific soft biometric (SB) attributes, such as gender, and baldness even in dealing with low-quality images. In this paper, we propose a novel multi-branch neural network that leverages SB attribute information to boost the performance of FR. To this end, we propose a cross-attribute-guided transformer fusion (CATF) module that effectively captures the long-range dependencies and relationships between FR and SB feature representations. The synergy created by the reciprocal flow of information in the dual cross-attention operations of the proposed CATF module enhances the performance of FR. Furthermore, we introduce a novel self-attention distillation framework that effectively highlights crucial facial regions, such as landmarks by aligning low-quality images with those of their high-quality counterparts in the feature space. The proposed self-attention distillation regularizes our network to learn a unified qualityinvariant feature representation in unconstrained environments. We conduct extensive experiments on various FR benchmarks varying in quality. Experimental results demonstrate the superiority of our FR method compared to state-of-the-art FR studies.</description><subject>Attention mechanisms</subject><subject>Distillation</subject><subject>Face recognition</subject><subject>Facial features</subject><subject>feature fusion</subject><subject>Generative adversarial networks</subject><subject>Image quality</subject><subject>Information flow</subject><subject>knowledge distillation</subject><subject>Modules</subject><subject>Neural networks</subject><subject>Representations</subject><subject>self-attention mechanism</subject><subject>soft biometric attributes</subject><subject>State-of-the-art reviews</subject><subject>Training</subject><subject>Transformers</subject><issn>2637-6407</issn><issn>2637-6407</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhosoOOb-gHgR8LozX2sa7-Z0czAZasXLkKanmtG1M0mR_Xtbt4tBIAk873s4TxRdEzwmBMu77GG5fhlTTNmYMS4pSc-iAU2YiBOOxfnJ-zIaeb_BGFPMZXcG0XY2zebawD2aucb7eBqCs3kbIF60toACZU7XvmzcFhz6tOEbvUNV9hjUwTY1erQ-2KrS_5-OQ6vmN35tdWXDHvXN6A1M81XbHriKLkpdeRgd72H0MX_KZs_xar1Yzqar2FAuQjwpipzrBOclI0ZIkRelETjlmLPCSCNzxnBqCtDE4AktsSCcAGNCklSC4AkbRreH3p1rflrwQW2a1tXdSEUlT7sQS3uKHijTr-6gVDtnt9rtFcGqN6v-zarerDqa7UI3h5AFgJMASzuphP0BtPx07A</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Alipour Talemi, Niloufar</creator><creator>Kashiani, Hossein</creator><creator>Nasrabadi, Nasser M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0000-6881-3671</orcidid><orcidid>https://orcid.org/0000-0001-8730-627X</orcidid><orcidid>https://orcid.org/0000-0001-8338-9987</orcidid></search><sort><creationdate>202401</creationdate><title>CATFace: Cross-Attribute-Guided Transformer With Self-Attention Distillation for Low-Quality Face Recognition</title><author>Alipour Talemi, Niloufar ; Kashiani, Hossein ; Nasrabadi, Nasser M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-5ddb4a60bf31c797bdfc7084043dc9c9b3308cdea1c052f07141e3379189e7463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Attention mechanisms</topic><topic>Distillation</topic><topic>Face recognition</topic><topic>Facial features</topic><topic>feature fusion</topic><topic>Generative adversarial networks</topic><topic>Image quality</topic><topic>Information flow</topic><topic>knowledge distillation</topic><topic>Modules</topic><topic>Neural networks</topic><topic>Representations</topic><topic>self-attention mechanism</topic><topic>soft biometric attributes</topic><topic>State-of-the-art reviews</topic><topic>Training</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alipour Talemi, Niloufar</creatorcontrib><creatorcontrib>Kashiani, Hossein</creatorcontrib><creatorcontrib>Nasrabadi, Nasser M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on biometrics, behavior, and identity science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alipour Talemi, Niloufar</au><au>Kashiani, Hossein</au><au>Nasrabadi, Nasser M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CATFace: Cross-Attribute-Guided Transformer With Self-Attention Distillation for Low-Quality Face Recognition</atitle><jtitle>IEEE transactions on biometrics, behavior, and identity science</jtitle><stitle>TBIOM</stitle><date>2024-01</date><risdate>2024</risdate><volume>6</volume><issue>1</issue><spage>132</spage><epage>146</epage><pages>132-146</pages><issn>2637-6407</issn><eissn>2637-6407</eissn><coden>ITBBCT</coden><abstract>Although face recognition (FR) has achieved great success in recent years, it is still challenging to accurately recognize faces in low-quality images due to the obscured facial details. Nevertheless, it is often feasible to make predictions about specific soft biometric (SB) attributes, such as gender, and baldness even in dealing with low-quality images. In this paper, we propose a novel multi-branch neural network that leverages SB attribute information to boost the performance of FR. To this end, we propose a cross-attribute-guided transformer fusion (CATF) module that effectively captures the long-range dependencies and relationships between FR and SB feature representations. The synergy created by the reciprocal flow of information in the dual cross-attention operations of the proposed CATF module enhances the performance of FR. Furthermore, we introduce a novel self-attention distillation framework that effectively highlights crucial facial regions, such as landmarks by aligning low-quality images with those of their high-quality counterparts in the feature space. The proposed self-attention distillation regularizes our network to learn a unified qualityinvariant feature representation in unconstrained environments. We conduct extensive experiments on various FR benchmarks varying in quality. Experimental results demonstrate the superiority of our FR method compared to state-of-the-art FR studies.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TBIOM.2023.3349218</doi><tpages>15</tpages><orcidid>https://orcid.org/0009-0000-6881-3671</orcidid><orcidid>https://orcid.org/0000-0001-8730-627X</orcidid><orcidid>https://orcid.org/0000-0001-8338-9987</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2637-6407
ispartof IEEE transactions on biometrics, behavior, and identity science, 2024-01, Vol.6 (1), p.132-146
issn 2637-6407
2637-6407
language eng
recordid cdi_crossref_primary_10_1109_TBIOM_2023_3349218
source IEEE Electronic Library (IEL)
subjects Attention mechanisms
Distillation
Face recognition
Facial features
feature fusion
Generative adversarial networks
Image quality
Information flow
knowledge distillation
Modules
Neural networks
Representations
self-attention mechanism
soft biometric attributes
State-of-the-art reviews
Training
Transformers
title CATFace: Cross-Attribute-Guided Transformer With Self-Attention Distillation for Low-Quality Face Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A50%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CATFace:%20Cross-Attribute-Guided%20Transformer%20With%20Self-Attention%20Distillation%20for%20Low-Quality%20Face%20Recognition&rft.jtitle=IEEE%20transactions%20on%20biometrics,%20behavior,%20and%20identity%20science&rft.au=Alipour%20Talemi,%20Niloufar&rft.date=2024-01&rft.volume=6&rft.issue=1&rft.spage=132&rft.epage=146&rft.pages=132-146&rft.issn=2637-6407&rft.eissn=2637-6407&rft.coden=ITBBCT&rft_id=info:doi/10.1109/TBIOM.2023.3349218&rft_dat=%3Cproquest_RIE%3E2948052386%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2948052386&rft_id=info:pmid/&rft_ieee_id=10380201&rfr_iscdi=true