Ranking Neighborhood and Class Prototype Contrastive Learning for Time Series

Time series are often complex and rich in information but sparsely labeled and therefore challenging to model. Existing contrastive learning methods conduct augmentations and maximize their similarity. However, they ignore the similarity of adjacent timestamps and suffer from the problem of sampling...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on big data 2024-11, p.1-12
Hauptverfasser: Wei, Chixuan, Yuan, Jidong, Zhang, Yi, Yu, Zhongyang, Liu, Yanze, Liu, Haiyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 1
container_title IEEE transactions on big data
container_volume
creator Wei, Chixuan
Yuan, Jidong
Zhang, Yi
Yu, Zhongyang
Liu, Yanze
Liu, Haiyang
description Time series are often complex and rich in information but sparsely labeled and therefore challenging to model. Existing contrastive learning methods conduct augmentations and maximize their similarity. However, they ignore the similarity of adjacent timestamps and suffer from the problem of sampling bias. In this paper, we propose a self-supervised framework for learning generalizable representations of time series, called \mathbf {R}anking n \mathbf {E} ighborhood and cla \mathbf {S} s prototyp \mathbf {E} contr\mathbf {A} stive \mathbf {L}earning (RESEAL). It exploits information about similarity ranking to learn an embedding space, ensuring that positive samples are ranked according to their temporal order. Additionally, RESEAL introduces a class prototype contrastive learning module. It contrasts time series representations and their corresponding centroids as positives against truly negative pairs from different clusters, mitigating the sampling bias issue. Extensive experiments conducted on several multivariate and univariate time series tasks (i.e., classification, anomaly detection, and forecasting) demonstrate that our representation framework achieves significant improvement over existing baselines of self-supervised time series representation
doi_str_mv 10.1109/TBDATA.2024.3495509
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TBDATA_2024_3495509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10748408</ieee_id><sourcerecordid>10_1109_TBDATA_2024_3495509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c658-cbb9a8683c2bea39599582a7817862601c35814f0d5e44d9a3a4d7f3bcc1049c3</originalsourceid><addsrcrecordid>eNpN0MtOwzAQhWELgURV-gSw8AukjG-xvSwBClK5CLKPHGfSBtq4siOkvj1E7YLVzOY_i4-QawZzxsDelnf3i3Ix58DlXEirFNgzMuFC84yDzc_HX_BMawuXZJbSFwCwHEBYPiEvH67_7vo1fcVuvalD3ITQUNc3tNi6lOh7DEMYDnukReiH6NLQ_SBdoYv9WLUh0rLbIf3E2GG6Ihet2yacne6UlI8PZfGUrd6Wz8VilflcmczXtXUmN8LzGp2wylpluNOGaZPzHJgXyjDZQqNQysY64WSjW1F7z0BaL6ZEHGd9DClFbKt97HYuHioG1WhSHU2q0aQ6mfxVN8eqQ8R_hZZGghG_wk9drQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ranking Neighborhood and Class Prototype Contrastive Learning for Time Series</title><source>IEEE Electronic Library (IEL)</source><creator>Wei, Chixuan ; Yuan, Jidong ; Zhang, Yi ; Yu, Zhongyang ; Liu, Yanze ; Liu, Haiyang</creator><creatorcontrib>Wei, Chixuan ; Yuan, Jidong ; Zhang, Yi ; Yu, Zhongyang ; Liu, Yanze ; Liu, Haiyang</creatorcontrib><description><![CDATA[Time series are often complex and rich in information but sparsely labeled and therefore challenging to model. Existing contrastive learning methods conduct augmentations and maximize their similarity. However, they ignore the similarity of adjacent timestamps and suffer from the problem of sampling bias. In this paper, we propose a self-supervised framework for learning generalizable representations of time series, called <inline-formula><tex-math notation="LaTeX">\mathbf {R}</tex-math></inline-formula>anking n <inline-formula><tex-math notation="LaTeX">\mathbf {E}</tex-math></inline-formula> ighborhood and cla <inline-formula><tex-math notation="LaTeX">\mathbf {S}</tex-math></inline-formula> s prototyp <inline-formula><tex-math notation="LaTeX">\mathbf {E}</tex-math></inline-formula> contr<inline-formula><tex-math notation="LaTeX">\mathbf {A}</tex-math></inline-formula> stive <inline-formula><tex-math notation="LaTeX">\mathbf {L}</tex-math></inline-formula>earning (RESEAL). It exploits information about similarity ranking to learn an embedding space, ensuring that positive samples are ranked according to their temporal order. Additionally, RESEAL introduces a class prototype contrastive learning module. It contrasts time series representations and their corresponding centroids as positives against truly negative pairs from different clusters, mitigating the sampling bias issue. Extensive experiments conducted on several multivariate and univariate time series tasks (i.e., classification, anomaly detection, and forecasting) demonstrate that our representation framework achieves significant improvement over existing baselines of self-supervised time series representation]]></description><identifier>ISSN: 2332-7790</identifier><identifier>EISSN: 2372-2096</identifier><identifier>DOI: 10.1109/TBDATA.2024.3495509</identifier><identifier>CODEN: ITBDAX</identifier><language>eng</language><publisher>IEEE</publisher><subject>Big Data ; Computational modeling ; Contrastive learning ; Data augmentation ; Forecasting ; Multivariate time series ; Prototypes ; Representation learning ; Semantics ; Time series analysis ; Time-frequency analysis</subject><ispartof>IEEE transactions on big data, 2024-11, p.1-12</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8268-6066 ; 0000-0003-2654-3372 ; 0000-0002-6840-2060</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10748408$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10748408$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wei, Chixuan</creatorcontrib><creatorcontrib>Yuan, Jidong</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Yu, Zhongyang</creatorcontrib><creatorcontrib>Liu, Yanze</creatorcontrib><creatorcontrib>Liu, Haiyang</creatorcontrib><title>Ranking Neighborhood and Class Prototype Contrastive Learning for Time Series</title><title>IEEE transactions on big data</title><addtitle>TBData</addtitle><description><![CDATA[Time series are often complex and rich in information but sparsely labeled and therefore challenging to model. Existing contrastive learning methods conduct augmentations and maximize their similarity. However, they ignore the similarity of adjacent timestamps and suffer from the problem of sampling bias. In this paper, we propose a self-supervised framework for learning generalizable representations of time series, called <inline-formula><tex-math notation="LaTeX">\mathbf {R}</tex-math></inline-formula>anking n <inline-formula><tex-math notation="LaTeX">\mathbf {E}</tex-math></inline-formula> ighborhood and cla <inline-formula><tex-math notation="LaTeX">\mathbf {S}</tex-math></inline-formula> s prototyp <inline-formula><tex-math notation="LaTeX">\mathbf {E}</tex-math></inline-formula> contr<inline-formula><tex-math notation="LaTeX">\mathbf {A}</tex-math></inline-formula> stive <inline-formula><tex-math notation="LaTeX">\mathbf {L}</tex-math></inline-formula>earning (RESEAL). It exploits information about similarity ranking to learn an embedding space, ensuring that positive samples are ranked according to their temporal order. Additionally, RESEAL introduces a class prototype contrastive learning module. It contrasts time series representations and their corresponding centroids as positives against truly negative pairs from different clusters, mitigating the sampling bias issue. Extensive experiments conducted on several multivariate and univariate time series tasks (i.e., classification, anomaly detection, and forecasting) demonstrate that our representation framework achieves significant improvement over existing baselines of self-supervised time series representation]]></description><subject>Big Data</subject><subject>Computational modeling</subject><subject>Contrastive learning</subject><subject>Data augmentation</subject><subject>Forecasting</subject><subject>Multivariate time series</subject><subject>Prototypes</subject><subject>Representation learning</subject><subject>Semantics</subject><subject>Time series analysis</subject><subject>Time-frequency analysis</subject><issn>2332-7790</issn><issn>2372-2096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpN0MtOwzAQhWELgURV-gSw8AukjG-xvSwBClK5CLKPHGfSBtq4siOkvj1E7YLVzOY_i4-QawZzxsDelnf3i3Ix58DlXEirFNgzMuFC84yDzc_HX_BMawuXZJbSFwCwHEBYPiEvH67_7vo1fcVuvalD3ITQUNc3tNi6lOh7DEMYDnukReiH6NLQ_SBdoYv9WLUh0rLbIf3E2GG6Ihet2yacne6UlI8PZfGUrd6Wz8VilflcmczXtXUmN8LzGp2wylpluNOGaZPzHJgXyjDZQqNQysY64WSjW1F7z0BaL6ZEHGd9DClFbKt97HYuHioG1WhSHU2q0aQ6mfxVN8eqQ8R_hZZGghG_wk9drQ</recordid><startdate>20241108</startdate><enddate>20241108</enddate><creator>Wei, Chixuan</creator><creator>Yuan, Jidong</creator><creator>Zhang, Yi</creator><creator>Yu, Zhongyang</creator><creator>Liu, Yanze</creator><creator>Liu, Haiyang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8268-6066</orcidid><orcidid>https://orcid.org/0000-0003-2654-3372</orcidid><orcidid>https://orcid.org/0000-0002-6840-2060</orcidid></search><sort><creationdate>20241108</creationdate><title>Ranking Neighborhood and Class Prototype Contrastive Learning for Time Series</title><author>Wei, Chixuan ; Yuan, Jidong ; Zhang, Yi ; Yu, Zhongyang ; Liu, Yanze ; Liu, Haiyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c658-cbb9a8683c2bea39599582a7817862601c35814f0d5e44d9a3a4d7f3bcc1049c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Big Data</topic><topic>Computational modeling</topic><topic>Contrastive learning</topic><topic>Data augmentation</topic><topic>Forecasting</topic><topic>Multivariate time series</topic><topic>Prototypes</topic><topic>Representation learning</topic><topic>Semantics</topic><topic>Time series analysis</topic><topic>Time-frequency analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Chixuan</creatorcontrib><creatorcontrib>Yuan, Jidong</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Yu, Zhongyang</creatorcontrib><creatorcontrib>Liu, Yanze</creatorcontrib><creatorcontrib>Liu, Haiyang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on big data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wei, Chixuan</au><au>Yuan, Jidong</au><au>Zhang, Yi</au><au>Yu, Zhongyang</au><au>Liu, Yanze</au><au>Liu, Haiyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ranking Neighborhood and Class Prototype Contrastive Learning for Time Series</atitle><jtitle>IEEE transactions on big data</jtitle><stitle>TBData</stitle><date>2024-11-08</date><risdate>2024</risdate><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>2332-7790</issn><eissn>2372-2096</eissn><coden>ITBDAX</coden><abstract><![CDATA[Time series are often complex and rich in information but sparsely labeled and therefore challenging to model. Existing contrastive learning methods conduct augmentations and maximize their similarity. However, they ignore the similarity of adjacent timestamps and suffer from the problem of sampling bias. In this paper, we propose a self-supervised framework for learning generalizable representations of time series, called <inline-formula><tex-math notation="LaTeX">\mathbf {R}</tex-math></inline-formula>anking n <inline-formula><tex-math notation="LaTeX">\mathbf {E}</tex-math></inline-formula> ighborhood and cla <inline-formula><tex-math notation="LaTeX">\mathbf {S}</tex-math></inline-formula> s prototyp <inline-formula><tex-math notation="LaTeX">\mathbf {E}</tex-math></inline-formula> contr<inline-formula><tex-math notation="LaTeX">\mathbf {A}</tex-math></inline-formula> stive <inline-formula><tex-math notation="LaTeX">\mathbf {L}</tex-math></inline-formula>earning (RESEAL). It exploits information about similarity ranking to learn an embedding space, ensuring that positive samples are ranked according to their temporal order. Additionally, RESEAL introduces a class prototype contrastive learning module. It contrasts time series representations and their corresponding centroids as positives against truly negative pairs from different clusters, mitigating the sampling bias issue. Extensive experiments conducted on several multivariate and univariate time series tasks (i.e., classification, anomaly detection, and forecasting) demonstrate that our representation framework achieves significant improvement over existing baselines of self-supervised time series representation]]></abstract><pub>IEEE</pub><doi>10.1109/TBDATA.2024.3495509</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8268-6066</orcidid><orcidid>https://orcid.org/0000-0003-2654-3372</orcidid><orcidid>https://orcid.org/0000-0002-6840-2060</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2332-7790
ispartof IEEE transactions on big data, 2024-11, p.1-12
issn 2332-7790
2372-2096
language eng
recordid cdi_crossref_primary_10_1109_TBDATA_2024_3495509
source IEEE Electronic Library (IEL)
subjects Big Data
Computational modeling
Contrastive learning
Data augmentation
Forecasting
Multivariate time series
Prototypes
Representation learning
Semantics
Time series analysis
Time-frequency analysis
title Ranking Neighborhood and Class Prototype Contrastive Learning for Time Series
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A30%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ranking%20Neighborhood%20and%20Class%20Prototype%20Contrastive%20Learning%20for%20Time%20Series&rft.jtitle=IEEE%20transactions%20on%20big%20data&rft.au=Wei,%20Chixuan&rft.date=2024-11-08&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=2332-7790&rft.eissn=2372-2096&rft.coden=ITBDAX&rft_id=info:doi/10.1109/TBDATA.2024.3495509&rft_dat=%3Ccrossref_RIE%3E10_1109_TBDATA_2024_3495509%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10748408&rfr_iscdi=true