Ranking Neighborhood and Class Prototype Contrastive Learning for Time Series
Time series are often complex and rich in information but sparsely labeled and therefore challenging to model. Existing contrastive learning methods conduct augmentations and maximize their similarity. However, they ignore the similarity of adjacent timestamps and suffer from the problem of sampling...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on big data 2024-11, p.1-12 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on big data |
container_volume | |
creator | Wei, Chixuan Yuan, Jidong Zhang, Yi Yu, Zhongyang Liu, Yanze Liu, Haiyang |
description | Time series are often complex and rich in information but sparsely labeled and therefore challenging to model. Existing contrastive learning methods conduct augmentations and maximize their similarity. However, they ignore the similarity of adjacent timestamps and suffer from the problem of sampling bias. In this paper, we propose a self-supervised framework for learning generalizable representations of time series, called \mathbf {R}anking n \mathbf {E} ighborhood and cla \mathbf {S} s prototyp \mathbf {E} contr\mathbf {A} stive \mathbf {L}earning (RESEAL). It exploits information about similarity ranking to learn an embedding space, ensuring that positive samples are ranked according to their temporal order. Additionally, RESEAL introduces a class prototype contrastive learning module. It contrasts time series representations and their corresponding centroids as positives against truly negative pairs from different clusters, mitigating the sampling bias issue. Extensive experiments conducted on several multivariate and univariate time series tasks (i.e., classification, anomaly detection, and forecasting) demonstrate that our representation framework achieves significant improvement over existing baselines of self-supervised time series representation |
doi_str_mv | 10.1109/TBDATA.2024.3495509 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TBDATA_2024_3495509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10748408</ieee_id><sourcerecordid>10_1109_TBDATA_2024_3495509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c658-cbb9a8683c2bea39599582a7817862601c35814f0d5e44d9a3a4d7f3bcc1049c3</originalsourceid><addsrcrecordid>eNpN0MtOwzAQhWELgURV-gSw8AukjG-xvSwBClK5CLKPHGfSBtq4siOkvj1E7YLVzOY_i4-QawZzxsDelnf3i3Ix58DlXEirFNgzMuFC84yDzc_HX_BMawuXZJbSFwCwHEBYPiEvH67_7vo1fcVuvalD3ITQUNc3tNi6lOh7DEMYDnukReiH6NLQ_SBdoYv9WLUh0rLbIf3E2GG6Ihet2yacne6UlI8PZfGUrd6Wz8VilflcmczXtXUmN8LzGp2wylpluNOGaZPzHJgXyjDZQqNQysY64WSjW1F7z0BaL6ZEHGd9DClFbKt97HYuHioG1WhSHU2q0aQ6mfxVN8eqQ8R_hZZGghG_wk9drQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ranking Neighborhood and Class Prototype Contrastive Learning for Time Series</title><source>IEEE Electronic Library (IEL)</source><creator>Wei, Chixuan ; Yuan, Jidong ; Zhang, Yi ; Yu, Zhongyang ; Liu, Yanze ; Liu, Haiyang</creator><creatorcontrib>Wei, Chixuan ; Yuan, Jidong ; Zhang, Yi ; Yu, Zhongyang ; Liu, Yanze ; Liu, Haiyang</creatorcontrib><description><![CDATA[Time series are often complex and rich in information but sparsely labeled and therefore challenging to model. Existing contrastive learning methods conduct augmentations and maximize their similarity. However, they ignore the similarity of adjacent timestamps and suffer from the problem of sampling bias. In this paper, we propose a self-supervised framework for learning generalizable representations of time series, called <inline-formula><tex-math notation="LaTeX">\mathbf {R}</tex-math></inline-formula>anking n <inline-formula><tex-math notation="LaTeX">\mathbf {E}</tex-math></inline-formula> ighborhood and cla <inline-formula><tex-math notation="LaTeX">\mathbf {S}</tex-math></inline-formula> s prototyp <inline-formula><tex-math notation="LaTeX">\mathbf {E}</tex-math></inline-formula> contr<inline-formula><tex-math notation="LaTeX">\mathbf {A}</tex-math></inline-formula> stive <inline-formula><tex-math notation="LaTeX">\mathbf {L}</tex-math></inline-formula>earning (RESEAL). It exploits information about similarity ranking to learn an embedding space, ensuring that positive samples are ranked according to their temporal order. Additionally, RESEAL introduces a class prototype contrastive learning module. It contrasts time series representations and their corresponding centroids as positives against truly negative pairs from different clusters, mitigating the sampling bias issue. Extensive experiments conducted on several multivariate and univariate time series tasks (i.e., classification, anomaly detection, and forecasting) demonstrate that our representation framework achieves significant improvement over existing baselines of self-supervised time series representation]]></description><identifier>ISSN: 2332-7790</identifier><identifier>EISSN: 2372-2096</identifier><identifier>DOI: 10.1109/TBDATA.2024.3495509</identifier><identifier>CODEN: ITBDAX</identifier><language>eng</language><publisher>IEEE</publisher><subject>Big Data ; Computational modeling ; Contrastive learning ; Data augmentation ; Forecasting ; Multivariate time series ; Prototypes ; Representation learning ; Semantics ; Time series analysis ; Time-frequency analysis</subject><ispartof>IEEE transactions on big data, 2024-11, p.1-12</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8268-6066 ; 0000-0003-2654-3372 ; 0000-0002-6840-2060</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10748408$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10748408$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wei, Chixuan</creatorcontrib><creatorcontrib>Yuan, Jidong</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Yu, Zhongyang</creatorcontrib><creatorcontrib>Liu, Yanze</creatorcontrib><creatorcontrib>Liu, Haiyang</creatorcontrib><title>Ranking Neighborhood and Class Prototype Contrastive Learning for Time Series</title><title>IEEE transactions on big data</title><addtitle>TBData</addtitle><description><![CDATA[Time series are often complex and rich in information but sparsely labeled and therefore challenging to model. Existing contrastive learning methods conduct augmentations and maximize their similarity. However, they ignore the similarity of adjacent timestamps and suffer from the problem of sampling bias. In this paper, we propose a self-supervised framework for learning generalizable representations of time series, called <inline-formula><tex-math notation="LaTeX">\mathbf {R}</tex-math></inline-formula>anking n <inline-formula><tex-math notation="LaTeX">\mathbf {E}</tex-math></inline-formula> ighborhood and cla <inline-formula><tex-math notation="LaTeX">\mathbf {S}</tex-math></inline-formula> s prototyp <inline-formula><tex-math notation="LaTeX">\mathbf {E}</tex-math></inline-formula> contr<inline-formula><tex-math notation="LaTeX">\mathbf {A}</tex-math></inline-formula> stive <inline-formula><tex-math notation="LaTeX">\mathbf {L}</tex-math></inline-formula>earning (RESEAL). It exploits information about similarity ranking to learn an embedding space, ensuring that positive samples are ranked according to their temporal order. Additionally, RESEAL introduces a class prototype contrastive learning module. It contrasts time series representations and their corresponding centroids as positives against truly negative pairs from different clusters, mitigating the sampling bias issue. Extensive experiments conducted on several multivariate and univariate time series tasks (i.e., classification, anomaly detection, and forecasting) demonstrate that our representation framework achieves significant improvement over existing baselines of self-supervised time series representation]]></description><subject>Big Data</subject><subject>Computational modeling</subject><subject>Contrastive learning</subject><subject>Data augmentation</subject><subject>Forecasting</subject><subject>Multivariate time series</subject><subject>Prototypes</subject><subject>Representation learning</subject><subject>Semantics</subject><subject>Time series analysis</subject><subject>Time-frequency analysis</subject><issn>2332-7790</issn><issn>2372-2096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpN0MtOwzAQhWELgURV-gSw8AukjG-xvSwBClK5CLKPHGfSBtq4siOkvj1E7YLVzOY_i4-QawZzxsDelnf3i3Ix58DlXEirFNgzMuFC84yDzc_HX_BMawuXZJbSFwCwHEBYPiEvH67_7vo1fcVuvalD3ITQUNc3tNi6lOh7DEMYDnukReiH6NLQ_SBdoYv9WLUh0rLbIf3E2GG6Ihet2yacne6UlI8PZfGUrd6Wz8VilflcmczXtXUmN8LzGp2wylpluNOGaZPzHJgXyjDZQqNQysY64WSjW1F7z0BaL6ZEHGd9DClFbKt97HYuHioG1WhSHU2q0aQ6mfxVN8eqQ8R_hZZGghG_wk9drQ</recordid><startdate>20241108</startdate><enddate>20241108</enddate><creator>Wei, Chixuan</creator><creator>Yuan, Jidong</creator><creator>Zhang, Yi</creator><creator>Yu, Zhongyang</creator><creator>Liu, Yanze</creator><creator>Liu, Haiyang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8268-6066</orcidid><orcidid>https://orcid.org/0000-0003-2654-3372</orcidid><orcidid>https://orcid.org/0000-0002-6840-2060</orcidid></search><sort><creationdate>20241108</creationdate><title>Ranking Neighborhood and Class Prototype Contrastive Learning for Time Series</title><author>Wei, Chixuan ; Yuan, Jidong ; Zhang, Yi ; Yu, Zhongyang ; Liu, Yanze ; Liu, Haiyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c658-cbb9a8683c2bea39599582a7817862601c35814f0d5e44d9a3a4d7f3bcc1049c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Big Data</topic><topic>Computational modeling</topic><topic>Contrastive learning</topic><topic>Data augmentation</topic><topic>Forecasting</topic><topic>Multivariate time series</topic><topic>Prototypes</topic><topic>Representation learning</topic><topic>Semantics</topic><topic>Time series analysis</topic><topic>Time-frequency analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Chixuan</creatorcontrib><creatorcontrib>Yuan, Jidong</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Yu, Zhongyang</creatorcontrib><creatorcontrib>Liu, Yanze</creatorcontrib><creatorcontrib>Liu, Haiyang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on big data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wei, Chixuan</au><au>Yuan, Jidong</au><au>Zhang, Yi</au><au>Yu, Zhongyang</au><au>Liu, Yanze</au><au>Liu, Haiyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ranking Neighborhood and Class Prototype Contrastive Learning for Time Series</atitle><jtitle>IEEE transactions on big data</jtitle><stitle>TBData</stitle><date>2024-11-08</date><risdate>2024</risdate><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>2332-7790</issn><eissn>2372-2096</eissn><coden>ITBDAX</coden><abstract><![CDATA[Time series are often complex and rich in information but sparsely labeled and therefore challenging to model. Existing contrastive learning methods conduct augmentations and maximize their similarity. However, they ignore the similarity of adjacent timestamps and suffer from the problem of sampling bias. In this paper, we propose a self-supervised framework for learning generalizable representations of time series, called <inline-formula><tex-math notation="LaTeX">\mathbf {R}</tex-math></inline-formula>anking n <inline-formula><tex-math notation="LaTeX">\mathbf {E}</tex-math></inline-formula> ighborhood and cla <inline-formula><tex-math notation="LaTeX">\mathbf {S}</tex-math></inline-formula> s prototyp <inline-formula><tex-math notation="LaTeX">\mathbf {E}</tex-math></inline-formula> contr<inline-formula><tex-math notation="LaTeX">\mathbf {A}</tex-math></inline-formula> stive <inline-formula><tex-math notation="LaTeX">\mathbf {L}</tex-math></inline-formula>earning (RESEAL). It exploits information about similarity ranking to learn an embedding space, ensuring that positive samples are ranked according to their temporal order. Additionally, RESEAL introduces a class prototype contrastive learning module. It contrasts time series representations and their corresponding centroids as positives against truly negative pairs from different clusters, mitigating the sampling bias issue. Extensive experiments conducted on several multivariate and univariate time series tasks (i.e., classification, anomaly detection, and forecasting) demonstrate that our representation framework achieves significant improvement over existing baselines of self-supervised time series representation]]></abstract><pub>IEEE</pub><doi>10.1109/TBDATA.2024.3495509</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8268-6066</orcidid><orcidid>https://orcid.org/0000-0003-2654-3372</orcidid><orcidid>https://orcid.org/0000-0002-6840-2060</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2332-7790 |
ispartof | IEEE transactions on big data, 2024-11, p.1-12 |
issn | 2332-7790 2372-2096 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TBDATA_2024_3495509 |
source | IEEE Electronic Library (IEL) |
subjects | Big Data Computational modeling Contrastive learning Data augmentation Forecasting Multivariate time series Prototypes Representation learning Semantics Time series analysis Time-frequency analysis |
title | Ranking Neighborhood and Class Prototype Contrastive Learning for Time Series |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A30%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ranking%20Neighborhood%20and%20Class%20Prototype%20Contrastive%20Learning%20for%20Time%20Series&rft.jtitle=IEEE%20transactions%20on%20big%20data&rft.au=Wei,%20Chixuan&rft.date=2024-11-08&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=2332-7790&rft.eissn=2372-2096&rft.coden=ITBDAX&rft_id=info:doi/10.1109/TBDATA.2024.3495509&rft_dat=%3Ccrossref_RIE%3E10_1109_TBDATA_2024_3495509%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10748408&rfr_iscdi=true |