An Energy-Efficient, Dynamic Voltage Scaling Neural Stimulator for a Proprioceptive Prosthesis

This paper presents an 8 channel energy-efficient neural stimulator for generating charge-balanced asymmetric pulses. Power consumption is reduced by implementing a fully-integrated DC-DC converter that uses a reconfigurable switched capacitor topology to provide 4 output voltages for Dynamic Voltag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on biomedical circuits and systems 2013-04, Vol.7 (2), p.129-139
Hauptverfasser: Williams, I., Constandinou, T. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 139
container_issue 2
container_start_page 129
container_title IEEE transactions on biomedical circuits and systems
container_volume 7
creator Williams, I.
Constandinou, T. G.
description This paper presents an 8 channel energy-efficient neural stimulator for generating charge-balanced asymmetric pulses. Power consumption is reduced by implementing a fully-integrated DC-DC converter that uses a reconfigurable switched capacitor topology to provide 4 output voltages for Dynamic Voltage Scaling (DVS). DC conversion efficiencies of up to 82% are achieved using integrated capacitances of under 1 nF and the DVS approach offers power savings of up to 50% compared to the front end of a typical current controlled neural stimulator. A novel charge balancing method is implemented which has a low level of accuracy on a single pulse and a much higher accuracy over a series of pulses. The method used is robust to process and component variation and does not require any initial or ongoing calibration. Measured results indicate that the charge imbalance is typically between 0.05%-0.15% of charge injected for a series of pulses. Ex-vivo experiments demonstrate the viability in using this circuit for neural activation. The circuit has been implemented in a commercially-available 0.18 μm HV CMOS technology and occupies a core die area of approximately 2.8 mm 2 for an 8 channel implementation.
doi_str_mv 10.1109/TBCAS.2013.2256906
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TBCAS_2013_2256906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6508875</ieee_id><sourcerecordid>1400397046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-bf4dd0c171609a99c93bbfe8967a95b5ab52bd9e738b09f9a54472a4596e44703</originalsourceid><addsrcrecordid>eNo9kFtr20AQhZeSUjtu_0ALQY95iJzZqzSPruM0BZMW7OSxYrUeORt0cbVSwP--cu34YZgzzDnD8DH2lcOUc8Db9ff5bDUVwOVUCG0QzAc25qggRkS4OGgpYqWVHrHLEF4BtBEoPrGRkKmWAvWY_ZnV0aKmdruPF0Xhnae6u4nu9rWtvIuem7KzW4pWzpa-3kaP1Le2jFadr_rSdk0bFUPZ6Hfb7FrfONp1_o0OY-heKPjwmX0sbBnoy6lP2NP9Yj1_iJe_fvycz5axkybp4rxQmw04nnADaBEdyjwvKEWTWNS5trkW-QYpkWkOWKDVSiXCKo2GBgVywq6Pd3dt87en0GWVD47K0tbU9CHjCkBiAsoMVnG0uuHL0FKRDa9Xtt1nHLID1-w_1-zANTtxHUJXp_t9XtHmHHkHORi-HQ2eiM5royFNEy3_AV-VfJE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1400397046</pqid></control><display><type>article</type><title>An Energy-Efficient, Dynamic Voltage Scaling Neural Stimulator for a Proprioceptive Prosthesis</title><source>IEEE Electronic Library (IEL)</source><creator>Williams, I. ; Constandinou, T. G.</creator><creatorcontrib>Williams, I. ; Constandinou, T. G.</creatorcontrib><description>This paper presents an 8 channel energy-efficient neural stimulator for generating charge-balanced asymmetric pulses. Power consumption is reduced by implementing a fully-integrated DC-DC converter that uses a reconfigurable switched capacitor topology to provide 4 output voltages for Dynamic Voltage Scaling (DVS). DC conversion efficiencies of up to 82% are achieved using integrated capacitances of under 1 nF and the DVS approach offers power savings of up to 50% compared to the front end of a typical current controlled neural stimulator. A novel charge balancing method is implemented which has a low level of accuracy on a single pulse and a much higher accuracy over a series of pulses. The method used is robust to process and component variation and does not require any initial or ongoing calibration. Measured results indicate that the charge imbalance is typically between 0.05%-0.15% of charge injected for a series of pulses. Ex-vivo experiments demonstrate the viability in using this circuit for neural activation. The circuit has been implemented in a commercially-available 0.18 μm HV CMOS technology and occupies a core die area of approximately 2.8 mm 2 for an 8 channel implementation.</description><identifier>ISSN: 1932-4545</identifier><identifier>EISSN: 1940-9990</identifier><identifier>DOI: 10.1109/TBCAS.2013.2256906</identifier><identifier>PMID: 23853295</identifier><identifier>CODEN: ITBCCW</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Biomedical Engineering ; Calibration ; Charge balancing ; Clocks ; current mode ; DC-DC power converters ; dynamic voltage scaling ; Electric Capacitance ; Electric Power Supplies ; Electric Stimulation ; Electrodes ; Equipment Design ; Feedback ; Humans ; Implantable Neurostimulators ; Muscles ; Muscles - pathology ; neural stimulator ; Neurons - pathology ; Oscillometry ; Power demand ; power efficient ; proprioception ; Proprioception - physiology ; Prosthesis Design ; Reproducibility of Results ; Signal Processing, Computer-Assisted ; Software ; Transistors ; Voltage control</subject><ispartof>IEEE transactions on biomedical circuits and systems, 2013-04, Vol.7 (2), p.129-139</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-bf4dd0c171609a99c93bbfe8967a95b5ab52bd9e738b09f9a54472a4596e44703</citedby><cites>FETCH-LOGICAL-c367t-bf4dd0c171609a99c93bbfe8967a95b5ab52bd9e738b09f9a54472a4596e44703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6508875$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6508875$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23853295$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Williams, I.</creatorcontrib><creatorcontrib>Constandinou, T. G.</creatorcontrib><title>An Energy-Efficient, Dynamic Voltage Scaling Neural Stimulator for a Proprioceptive Prosthesis</title><title>IEEE transactions on biomedical circuits and systems</title><addtitle>TBCAS</addtitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><description>This paper presents an 8 channel energy-efficient neural stimulator for generating charge-balanced asymmetric pulses. Power consumption is reduced by implementing a fully-integrated DC-DC converter that uses a reconfigurable switched capacitor topology to provide 4 output voltages for Dynamic Voltage Scaling (DVS). DC conversion efficiencies of up to 82% are achieved using integrated capacitances of under 1 nF and the DVS approach offers power savings of up to 50% compared to the front end of a typical current controlled neural stimulator. A novel charge balancing method is implemented which has a low level of accuracy on a single pulse and a much higher accuracy over a series of pulses. The method used is robust to process and component variation and does not require any initial or ongoing calibration. Measured results indicate that the charge imbalance is typically between 0.05%-0.15% of charge injected for a series of pulses. Ex-vivo experiments demonstrate the viability in using this circuit for neural activation. The circuit has been implemented in a commercially-available 0.18 μm HV CMOS technology and occupies a core die area of approximately 2.8 mm 2 for an 8 channel implementation.</description><subject>Biomedical Engineering</subject><subject>Calibration</subject><subject>Charge balancing</subject><subject>Clocks</subject><subject>current mode</subject><subject>DC-DC power converters</subject><subject>dynamic voltage scaling</subject><subject>Electric Capacitance</subject><subject>Electric Power Supplies</subject><subject>Electric Stimulation</subject><subject>Electrodes</subject><subject>Equipment Design</subject><subject>Feedback</subject><subject>Humans</subject><subject>Implantable Neurostimulators</subject><subject>Muscles</subject><subject>Muscles - pathology</subject><subject>neural stimulator</subject><subject>Neurons - pathology</subject><subject>Oscillometry</subject><subject>Power demand</subject><subject>power efficient</subject><subject>proprioception</subject><subject>Proprioception - physiology</subject><subject>Prosthesis Design</subject><subject>Reproducibility of Results</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Software</subject><subject>Transistors</subject><subject>Voltage control</subject><issn>1932-4545</issn><issn>1940-9990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kFtr20AQhZeSUjtu_0ALQY95iJzZqzSPruM0BZMW7OSxYrUeORt0cbVSwP--cu34YZgzzDnD8DH2lcOUc8Db9ff5bDUVwOVUCG0QzAc25qggRkS4OGgpYqWVHrHLEF4BtBEoPrGRkKmWAvWY_ZnV0aKmdruPF0Xhnae6u4nu9rWtvIuem7KzW4pWzpa-3kaP1Le2jFadr_rSdk0bFUPZ6Hfb7FrfONp1_o0OY-heKPjwmX0sbBnoy6lP2NP9Yj1_iJe_fvycz5axkybp4rxQmw04nnADaBEdyjwvKEWTWNS5trkW-QYpkWkOWKDVSiXCKo2GBgVywq6Pd3dt87en0GWVD47K0tbU9CHjCkBiAsoMVnG0uuHL0FKRDa9Xtt1nHLID1-w_1-zANTtxHUJXp_t9XtHmHHkHORi-HQ2eiM5royFNEy3_AV-VfJE</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Williams, I.</creator><creator>Constandinou, T. G.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130401</creationdate><title>An Energy-Efficient, Dynamic Voltage Scaling Neural Stimulator for a Proprioceptive Prosthesis</title><author>Williams, I. ; Constandinou, T. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-bf4dd0c171609a99c93bbfe8967a95b5ab52bd9e738b09f9a54472a4596e44703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biomedical Engineering</topic><topic>Calibration</topic><topic>Charge balancing</topic><topic>Clocks</topic><topic>current mode</topic><topic>DC-DC power converters</topic><topic>dynamic voltage scaling</topic><topic>Electric Capacitance</topic><topic>Electric Power Supplies</topic><topic>Electric Stimulation</topic><topic>Electrodes</topic><topic>Equipment Design</topic><topic>Feedback</topic><topic>Humans</topic><topic>Implantable Neurostimulators</topic><topic>Muscles</topic><topic>Muscles - pathology</topic><topic>neural stimulator</topic><topic>Neurons - pathology</topic><topic>Oscillometry</topic><topic>Power demand</topic><topic>power efficient</topic><topic>proprioception</topic><topic>Proprioception - physiology</topic><topic>Prosthesis Design</topic><topic>Reproducibility of Results</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Software</topic><topic>Transistors</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williams, I.</creatorcontrib><creatorcontrib>Constandinou, T. G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Williams, I.</au><au>Constandinou, T. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Energy-Efficient, Dynamic Voltage Scaling Neural Stimulator for a Proprioceptive Prosthesis</atitle><jtitle>IEEE transactions on biomedical circuits and systems</jtitle><stitle>TBCAS</stitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><date>2013-04-01</date><risdate>2013</risdate><volume>7</volume><issue>2</issue><spage>129</spage><epage>139</epage><pages>129-139</pages><issn>1932-4545</issn><eissn>1940-9990</eissn><coden>ITBCCW</coden><abstract>This paper presents an 8 channel energy-efficient neural stimulator for generating charge-balanced asymmetric pulses. Power consumption is reduced by implementing a fully-integrated DC-DC converter that uses a reconfigurable switched capacitor topology to provide 4 output voltages for Dynamic Voltage Scaling (DVS). DC conversion efficiencies of up to 82% are achieved using integrated capacitances of under 1 nF and the DVS approach offers power savings of up to 50% compared to the front end of a typical current controlled neural stimulator. A novel charge balancing method is implemented which has a low level of accuracy on a single pulse and a much higher accuracy over a series of pulses. The method used is robust to process and component variation and does not require any initial or ongoing calibration. Measured results indicate that the charge imbalance is typically between 0.05%-0.15% of charge injected for a series of pulses. Ex-vivo experiments demonstrate the viability in using this circuit for neural activation. The circuit has been implemented in a commercially-available 0.18 μm HV CMOS technology and occupies a core die area of approximately 2.8 mm 2 for an 8 channel implementation.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>23853295</pmid><doi>10.1109/TBCAS.2013.2256906</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4545
ispartof IEEE transactions on biomedical circuits and systems, 2013-04, Vol.7 (2), p.129-139
issn 1932-4545
1940-9990
language eng
recordid cdi_crossref_primary_10_1109_TBCAS_2013_2256906
source IEEE Electronic Library (IEL)
subjects Biomedical Engineering
Calibration
Charge balancing
Clocks
current mode
DC-DC power converters
dynamic voltage scaling
Electric Capacitance
Electric Power Supplies
Electric Stimulation
Electrodes
Equipment Design
Feedback
Humans
Implantable Neurostimulators
Muscles
Muscles - pathology
neural stimulator
Neurons - pathology
Oscillometry
Power demand
power efficient
proprioception
Proprioception - physiology
Prosthesis Design
Reproducibility of Results
Signal Processing, Computer-Assisted
Software
Transistors
Voltage control
title An Energy-Efficient, Dynamic Voltage Scaling Neural Stimulator for a Proprioceptive Prosthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A03%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Energy-Efficient,%20Dynamic%20Voltage%20Scaling%20Neural%20Stimulator%20for%20a%20Proprioceptive%20Prosthesis&rft.jtitle=IEEE%20transactions%20on%20biomedical%20circuits%20and%20systems&rft.au=Williams,%20I.&rft.date=2013-04-01&rft.volume=7&rft.issue=2&rft.spage=129&rft.epage=139&rft.pages=129-139&rft.issn=1932-4545&rft.eissn=1940-9990&rft.coden=ITBCCW&rft_id=info:doi/10.1109/TBCAS.2013.2256906&rft_dat=%3Cproquest_RIE%3E1400397046%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1400397046&rft_id=info:pmid/23853295&rft_ieee_id=6508875&rfr_iscdi=true