An Energy-Efficient, Dynamic Voltage Scaling Neural Stimulator for a Proprioceptive Prosthesis
This paper presents an 8 channel energy-efficient neural stimulator for generating charge-balanced asymmetric pulses. Power consumption is reduced by implementing a fully-integrated DC-DC converter that uses a reconfigurable switched capacitor topology to provide 4 output voltages for Dynamic Voltag...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on biomedical circuits and systems 2013-04, Vol.7 (2), p.129-139 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 139 |
---|---|
container_issue | 2 |
container_start_page | 129 |
container_title | IEEE transactions on biomedical circuits and systems |
container_volume | 7 |
creator | Williams, I. Constandinou, T. G. |
description | This paper presents an 8 channel energy-efficient neural stimulator for generating charge-balanced asymmetric pulses. Power consumption is reduced by implementing a fully-integrated DC-DC converter that uses a reconfigurable switched capacitor topology to provide 4 output voltages for Dynamic Voltage Scaling (DVS). DC conversion efficiencies of up to 82% are achieved using integrated capacitances of under 1 nF and the DVS approach offers power savings of up to 50% compared to the front end of a typical current controlled neural stimulator. A novel charge balancing method is implemented which has a low level of accuracy on a single pulse and a much higher accuracy over a series of pulses. The method used is robust to process and component variation and does not require any initial or ongoing calibration. Measured results indicate that the charge imbalance is typically between 0.05%-0.15% of charge injected for a series of pulses. Ex-vivo experiments demonstrate the viability in using this circuit for neural activation. The circuit has been implemented in a commercially-available 0.18 μm HV CMOS technology and occupies a core die area of approximately 2.8 mm 2 for an 8 channel implementation. |
doi_str_mv | 10.1109/TBCAS.2013.2256906 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TBCAS_2013_2256906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6508875</ieee_id><sourcerecordid>1400397046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-bf4dd0c171609a99c93bbfe8967a95b5ab52bd9e738b09f9a54472a4596e44703</originalsourceid><addsrcrecordid>eNo9kFtr20AQhZeSUjtu_0ALQY95iJzZqzSPruM0BZMW7OSxYrUeORt0cbVSwP--cu34YZgzzDnD8DH2lcOUc8Db9ff5bDUVwOVUCG0QzAc25qggRkS4OGgpYqWVHrHLEF4BtBEoPrGRkKmWAvWY_ZnV0aKmdruPF0Xhnae6u4nu9rWtvIuem7KzW4pWzpa-3kaP1Le2jFadr_rSdk0bFUPZ6Hfb7FrfONp1_o0OY-heKPjwmX0sbBnoy6lP2NP9Yj1_iJe_fvycz5axkybp4rxQmw04nnADaBEdyjwvKEWTWNS5trkW-QYpkWkOWKDVSiXCKo2GBgVywq6Pd3dt87en0GWVD47K0tbU9CHjCkBiAsoMVnG0uuHL0FKRDa9Xtt1nHLID1-w_1-zANTtxHUJXp_t9XtHmHHkHORi-HQ2eiM5royFNEy3_AV-VfJE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1400397046</pqid></control><display><type>article</type><title>An Energy-Efficient, Dynamic Voltage Scaling Neural Stimulator for a Proprioceptive Prosthesis</title><source>IEEE Electronic Library (IEL)</source><creator>Williams, I. ; Constandinou, T. G.</creator><creatorcontrib>Williams, I. ; Constandinou, T. G.</creatorcontrib><description>This paper presents an 8 channel energy-efficient neural stimulator for generating charge-balanced asymmetric pulses. Power consumption is reduced by implementing a fully-integrated DC-DC converter that uses a reconfigurable switched capacitor topology to provide 4 output voltages for Dynamic Voltage Scaling (DVS). DC conversion efficiencies of up to 82% are achieved using integrated capacitances of under 1 nF and the DVS approach offers power savings of up to 50% compared to the front end of a typical current controlled neural stimulator. A novel charge balancing method is implemented which has a low level of accuracy on a single pulse and a much higher accuracy over a series of pulses. The method used is robust to process and component variation and does not require any initial or ongoing calibration. Measured results indicate that the charge imbalance is typically between 0.05%-0.15% of charge injected for a series of pulses. Ex-vivo experiments demonstrate the viability in using this circuit for neural activation. The circuit has been implemented in a commercially-available 0.18 μm HV CMOS technology and occupies a core die area of approximately 2.8 mm 2 for an 8 channel implementation.</description><identifier>ISSN: 1932-4545</identifier><identifier>EISSN: 1940-9990</identifier><identifier>DOI: 10.1109/TBCAS.2013.2256906</identifier><identifier>PMID: 23853295</identifier><identifier>CODEN: ITBCCW</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Biomedical Engineering ; Calibration ; Charge balancing ; Clocks ; current mode ; DC-DC power converters ; dynamic voltage scaling ; Electric Capacitance ; Electric Power Supplies ; Electric Stimulation ; Electrodes ; Equipment Design ; Feedback ; Humans ; Implantable Neurostimulators ; Muscles ; Muscles - pathology ; neural stimulator ; Neurons - pathology ; Oscillometry ; Power demand ; power efficient ; proprioception ; Proprioception - physiology ; Prosthesis Design ; Reproducibility of Results ; Signal Processing, Computer-Assisted ; Software ; Transistors ; Voltage control</subject><ispartof>IEEE transactions on biomedical circuits and systems, 2013-04, Vol.7 (2), p.129-139</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-bf4dd0c171609a99c93bbfe8967a95b5ab52bd9e738b09f9a54472a4596e44703</citedby><cites>FETCH-LOGICAL-c367t-bf4dd0c171609a99c93bbfe8967a95b5ab52bd9e738b09f9a54472a4596e44703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6508875$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6508875$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23853295$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Williams, I.</creatorcontrib><creatorcontrib>Constandinou, T. G.</creatorcontrib><title>An Energy-Efficient, Dynamic Voltage Scaling Neural Stimulator for a Proprioceptive Prosthesis</title><title>IEEE transactions on biomedical circuits and systems</title><addtitle>TBCAS</addtitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><description>This paper presents an 8 channel energy-efficient neural stimulator for generating charge-balanced asymmetric pulses. Power consumption is reduced by implementing a fully-integrated DC-DC converter that uses a reconfigurable switched capacitor topology to provide 4 output voltages for Dynamic Voltage Scaling (DVS). DC conversion efficiencies of up to 82% are achieved using integrated capacitances of under 1 nF and the DVS approach offers power savings of up to 50% compared to the front end of a typical current controlled neural stimulator. A novel charge balancing method is implemented which has a low level of accuracy on a single pulse and a much higher accuracy over a series of pulses. The method used is robust to process and component variation and does not require any initial or ongoing calibration. Measured results indicate that the charge imbalance is typically between 0.05%-0.15% of charge injected for a series of pulses. Ex-vivo experiments demonstrate the viability in using this circuit for neural activation. The circuit has been implemented in a commercially-available 0.18 μm HV CMOS technology and occupies a core die area of approximately 2.8 mm 2 for an 8 channel implementation.</description><subject>Biomedical Engineering</subject><subject>Calibration</subject><subject>Charge balancing</subject><subject>Clocks</subject><subject>current mode</subject><subject>DC-DC power converters</subject><subject>dynamic voltage scaling</subject><subject>Electric Capacitance</subject><subject>Electric Power Supplies</subject><subject>Electric Stimulation</subject><subject>Electrodes</subject><subject>Equipment Design</subject><subject>Feedback</subject><subject>Humans</subject><subject>Implantable Neurostimulators</subject><subject>Muscles</subject><subject>Muscles - pathology</subject><subject>neural stimulator</subject><subject>Neurons - pathology</subject><subject>Oscillometry</subject><subject>Power demand</subject><subject>power efficient</subject><subject>proprioception</subject><subject>Proprioception - physiology</subject><subject>Prosthesis Design</subject><subject>Reproducibility of Results</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Software</subject><subject>Transistors</subject><subject>Voltage control</subject><issn>1932-4545</issn><issn>1940-9990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNo9kFtr20AQhZeSUjtu_0ALQY95iJzZqzSPruM0BZMW7OSxYrUeORt0cbVSwP--cu34YZgzzDnD8DH2lcOUc8Db9ff5bDUVwOVUCG0QzAc25qggRkS4OGgpYqWVHrHLEF4BtBEoPrGRkKmWAvWY_ZnV0aKmdruPF0Xhnae6u4nu9rWtvIuem7KzW4pWzpa-3kaP1Le2jFadr_rSdk0bFUPZ6Hfb7FrfONp1_o0OY-heKPjwmX0sbBnoy6lP2NP9Yj1_iJe_fvycz5axkybp4rxQmw04nnADaBEdyjwvKEWTWNS5trkW-QYpkWkOWKDVSiXCKo2GBgVywq6Pd3dt87en0GWVD47K0tbU9CHjCkBiAsoMVnG0uuHL0FKRDa9Xtt1nHLID1-w_1-zANTtxHUJXp_t9XtHmHHkHORi-HQ2eiM5royFNEy3_AV-VfJE</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Williams, I.</creator><creator>Constandinou, T. G.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130401</creationdate><title>An Energy-Efficient, Dynamic Voltage Scaling Neural Stimulator for a Proprioceptive Prosthesis</title><author>Williams, I. ; Constandinou, T. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-bf4dd0c171609a99c93bbfe8967a95b5ab52bd9e738b09f9a54472a4596e44703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biomedical Engineering</topic><topic>Calibration</topic><topic>Charge balancing</topic><topic>Clocks</topic><topic>current mode</topic><topic>DC-DC power converters</topic><topic>dynamic voltage scaling</topic><topic>Electric Capacitance</topic><topic>Electric Power Supplies</topic><topic>Electric Stimulation</topic><topic>Electrodes</topic><topic>Equipment Design</topic><topic>Feedback</topic><topic>Humans</topic><topic>Implantable Neurostimulators</topic><topic>Muscles</topic><topic>Muscles - pathology</topic><topic>neural stimulator</topic><topic>Neurons - pathology</topic><topic>Oscillometry</topic><topic>Power demand</topic><topic>power efficient</topic><topic>proprioception</topic><topic>Proprioception - physiology</topic><topic>Prosthesis Design</topic><topic>Reproducibility of Results</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Software</topic><topic>Transistors</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williams, I.</creatorcontrib><creatorcontrib>Constandinou, T. G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Williams, I.</au><au>Constandinou, T. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Energy-Efficient, Dynamic Voltage Scaling Neural Stimulator for a Proprioceptive Prosthesis</atitle><jtitle>IEEE transactions on biomedical circuits and systems</jtitle><stitle>TBCAS</stitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><date>2013-04-01</date><risdate>2013</risdate><volume>7</volume><issue>2</issue><spage>129</spage><epage>139</epage><pages>129-139</pages><issn>1932-4545</issn><eissn>1940-9990</eissn><coden>ITBCCW</coden><abstract>This paper presents an 8 channel energy-efficient neural stimulator for generating charge-balanced asymmetric pulses. Power consumption is reduced by implementing a fully-integrated DC-DC converter that uses a reconfigurable switched capacitor topology to provide 4 output voltages for Dynamic Voltage Scaling (DVS). DC conversion efficiencies of up to 82% are achieved using integrated capacitances of under 1 nF and the DVS approach offers power savings of up to 50% compared to the front end of a typical current controlled neural stimulator. A novel charge balancing method is implemented which has a low level of accuracy on a single pulse and a much higher accuracy over a series of pulses. The method used is robust to process and component variation and does not require any initial or ongoing calibration. Measured results indicate that the charge imbalance is typically between 0.05%-0.15% of charge injected for a series of pulses. Ex-vivo experiments demonstrate the viability in using this circuit for neural activation. The circuit has been implemented in a commercially-available 0.18 μm HV CMOS technology and occupies a core die area of approximately 2.8 mm 2 for an 8 channel implementation.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>23853295</pmid><doi>10.1109/TBCAS.2013.2256906</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4545 |
ispartof | IEEE transactions on biomedical circuits and systems, 2013-04, Vol.7 (2), p.129-139 |
issn | 1932-4545 1940-9990 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TBCAS_2013_2256906 |
source | IEEE Electronic Library (IEL) |
subjects | Biomedical Engineering Calibration Charge balancing Clocks current mode DC-DC power converters dynamic voltage scaling Electric Capacitance Electric Power Supplies Electric Stimulation Electrodes Equipment Design Feedback Humans Implantable Neurostimulators Muscles Muscles - pathology neural stimulator Neurons - pathology Oscillometry Power demand power efficient proprioception Proprioception - physiology Prosthesis Design Reproducibility of Results Signal Processing, Computer-Assisted Software Transistors Voltage control |
title | An Energy-Efficient, Dynamic Voltage Scaling Neural Stimulator for a Proprioceptive Prosthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A03%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Energy-Efficient,%20Dynamic%20Voltage%20Scaling%20Neural%20Stimulator%20for%20a%20Proprioceptive%20Prosthesis&rft.jtitle=IEEE%20transactions%20on%20biomedical%20circuits%20and%20systems&rft.au=Williams,%20I.&rft.date=2013-04-01&rft.volume=7&rft.issue=2&rft.spage=129&rft.epage=139&rft.pages=129-139&rft.issn=1932-4545&rft.eissn=1940-9990&rft.coden=ITBCCW&rft_id=info:doi/10.1109/TBCAS.2013.2256906&rft_dat=%3Cproquest_RIE%3E1400397046%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1400397046&rft_id=info:pmid/23853295&rft_ieee_id=6508875&rfr_iscdi=true |