On the exact evaluation of discrete Fourier transforms

A theorem regarding the evaluation of discrete transforms recently proven by Rader is generalized to give a lower bound on the number of digits required to evaluate a z transform for arbitrary radix.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on acoustics, speech, and signal processing speech, and signal processing, 1975-12, Vol.23 (6), p.585-586
1. Verfasser: Cohn-Sfetcu, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 586
container_issue 6
container_start_page 585
container_title IEEE transactions on acoustics, speech, and signal processing
container_volume 23
creator Cohn-Sfetcu, S.
description A theorem regarding the evaluation of discrete transforms recently proven by Rader is generalized to give a lower bound on the number of digits required to evaluate a z transform for arbitrary radix.
doi_str_mv 10.1109/TASSP.1975.1162741
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TASSP_1975_1162741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1162741</ieee_id><sourcerecordid>10_1109_TASSP_1975_1162741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-4b571fa7ab47c3a168cf5b1feb5107ea650775caa72c76fdc0be63ed1821e6593</originalsourceid><addsrcrecordid>eNpFj8FKAzEURbNQsFZ_QDf5gal5mUkysyzFqlCo0LoOL5kXHGlnJElF_97WDri6XC7nwmHsDsQMQDQP2_lm8zqDxqhj19JUcMEmQjS6KBXUV-w6pQ8hoKqVnDC97nl-J07f6DOnL9wdMHdDz4fA2y75SJn4cjjEjiLPEfsUhrhPN-wy4C7R7ZhT9rZ83C6ei9X66WUxXxVeapWLyikDAQ26yvgSQdc-KAeBnAJhCLUSxiiPaKQ3OrReONIltVBLIK2acsrk-dfHIaVIwX7Gbo_xx4KwJ1v7Z2tPtna0PUL3Z6gjon9gXH8BOkNTrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the exact evaluation of discrete Fourier transforms</title><source>IEEE Electronic Library (IEL)</source><creator>Cohn-Sfetcu, S.</creator><creatorcontrib>Cohn-Sfetcu, S.</creatorcontrib><description>A theorem regarding the evaluation of discrete transforms recently proven by Rader is generalized to give a lower bound on the number of digits required to evaluate a z transform for arbitrary radix.</description><identifier>ISSN: 0096-3518</identifier><identifier>DOI: 10.1109/TASSP.1975.1162741</identifier><identifier>CODEN: IETABA</identifier><language>eng</language><publisher>IEEE</publisher><subject>Autocorrelation ; Circuit theory ; Digital filters ; Discrete Fourier transforms ; Equations ; Multidimensional signal processing ; Speech processing ; Stability criteria ; Transmission line matrix methods ; Transmission line theory</subject><ispartof>IEEE transactions on acoustics, speech, and signal processing, 1975-12, Vol.23 (6), p.585-586</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-4b571fa7ab47c3a168cf5b1feb5107ea650775caa72c76fdc0be63ed1821e6593</citedby><cites>FETCH-LOGICAL-c265t-4b571fa7ab47c3a168cf5b1feb5107ea650775caa72c76fdc0be63ed1821e6593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1162741$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1162741$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cohn-Sfetcu, S.</creatorcontrib><title>On the exact evaluation of discrete Fourier transforms</title><title>IEEE transactions on acoustics, speech, and signal processing</title><addtitle>T-ASSP</addtitle><description>A theorem regarding the evaluation of discrete transforms recently proven by Rader is generalized to give a lower bound on the number of digits required to evaluate a z transform for arbitrary radix.</description><subject>Autocorrelation</subject><subject>Circuit theory</subject><subject>Digital filters</subject><subject>Discrete Fourier transforms</subject><subject>Equations</subject><subject>Multidimensional signal processing</subject><subject>Speech processing</subject><subject>Stability criteria</subject><subject>Transmission line matrix methods</subject><subject>Transmission line theory</subject><issn>0096-3518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1975</creationdate><recordtype>article</recordtype><recordid>eNpFj8FKAzEURbNQsFZ_QDf5gal5mUkysyzFqlCo0LoOL5kXHGlnJElF_97WDri6XC7nwmHsDsQMQDQP2_lm8zqDxqhj19JUcMEmQjS6KBXUV-w6pQ8hoKqVnDC97nl-J07f6DOnL9wdMHdDz4fA2y75SJn4cjjEjiLPEfsUhrhPN-wy4C7R7ZhT9rZ83C6ei9X66WUxXxVeapWLyikDAQ26yvgSQdc-KAeBnAJhCLUSxiiPaKQ3OrReONIltVBLIK2acsrk-dfHIaVIwX7Gbo_xx4KwJ1v7Z2tPtna0PUL3Z6gjon9gXH8BOkNTrA</recordid><startdate>197512</startdate><enddate>197512</enddate><creator>Cohn-Sfetcu, S.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>197512</creationdate><title>On the exact evaluation of discrete Fourier transforms</title><author>Cohn-Sfetcu, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-4b571fa7ab47c3a168cf5b1feb5107ea650775caa72c76fdc0be63ed1821e6593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1975</creationdate><topic>Autocorrelation</topic><topic>Circuit theory</topic><topic>Digital filters</topic><topic>Discrete Fourier transforms</topic><topic>Equations</topic><topic>Multidimensional signal processing</topic><topic>Speech processing</topic><topic>Stability criteria</topic><topic>Transmission line matrix methods</topic><topic>Transmission line theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Cohn-Sfetcu, S.</creatorcontrib><collection>CrossRef</collection><jtitle>IEEE transactions on acoustics, speech, and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cohn-Sfetcu, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the exact evaluation of discrete Fourier transforms</atitle><jtitle>IEEE transactions on acoustics, speech, and signal processing</jtitle><stitle>T-ASSP</stitle><date>1975-12</date><risdate>1975</risdate><volume>23</volume><issue>6</issue><spage>585</spage><epage>586</epage><pages>585-586</pages><issn>0096-3518</issn><coden>IETABA</coden><abstract>A theorem regarding the evaluation of discrete transforms recently proven by Rader is generalized to give a lower bound on the number of digits required to evaluate a z transform for arbitrary radix.</abstract><pub>IEEE</pub><doi>10.1109/TASSP.1975.1162741</doi><tpages>2</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0096-3518
ispartof IEEE transactions on acoustics, speech, and signal processing, 1975-12, Vol.23 (6), p.585-586
issn 0096-3518
language eng
recordid cdi_crossref_primary_10_1109_TASSP_1975_1162741
source IEEE Electronic Library (IEL)
subjects Autocorrelation
Circuit theory
Digital filters
Discrete Fourier transforms
Equations
Multidimensional signal processing
Speech processing
Stability criteria
Transmission line matrix methods
Transmission line theory
title On the exact evaluation of discrete Fourier transforms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A03%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20exact%20evaluation%20of%20discrete%20Fourier%20transforms&rft.jtitle=IEEE%20transactions%20on%20acoustics,%20speech,%20and%20signal%20processing&rft.au=Cohn-Sfetcu,%20S.&rft.date=1975-12&rft.volume=23&rft.issue=6&rft.spage=585&rft.epage=586&rft.pages=585-586&rft.issn=0096-3518&rft.coden=IETABA&rft_id=info:doi/10.1109/TASSP.1975.1162741&rft_dat=%3Ccrossref_RIE%3E10_1109_TASSP_1975_1162741%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1162741&rfr_iscdi=true