Joint Source-Filter Optimization for Accurate Vocal Tract Estimation Using Differential Evolution
In this work, we present a joint source-filter optimization approach for separating voiced speech into vocal tract (VT) and voice source components. The presented method is pitch-synchronous and thereby exhibits a high robustness against vocal jitter, shimmer and other glottal variations while cover...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on audio, speech, and language processing speech, and language processing, 2013-08, Vol.21 (8), p.1560-1572 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1572 |
---|---|
container_issue | 8 |
container_start_page | 1560 |
container_title | IEEE transactions on audio, speech, and language processing |
container_volume | 21 |
creator | Schleusing, O. Kinnunen, T. Story, B. Vesin, J-M |
description | In this work, we present a joint source-filter optimization approach for separating voiced speech into vocal tract (VT) and voice source components. The presented method is pitch-synchronous and thereby exhibits a high robustness against vocal jitter, shimmer and other glottal variations while covering various voice qualities. The voice source is modeled using the Liljencrants-Fant (LF) model, which is integrated into a time-varying auto-regressive speech production model with exogenous input (ARX). The non-convex optimization problem of finding the optimal model parameters is addressed by a heuristic, evolutionary optimization method called differential evolution. The optimization method is first validated in a series of experiments with synthetic speech. Estimated glottal source and VT parameters are the criteria used for comparison with the iterative adaptive inverse filter (IAIF) method and the linear prediction (LP) method under varying conditions such as jitter, fundamental frequency ( f 0 ) as well as environmental and glottal noise. The results show that the proposed method largely reduces the bias and standard deviation of estimated VT coefficients and glottal source parameters. Furthermore, the performance of the source-filter separation is evaluated in experiments using speech generated with a physical model of speech production. The proposed method reliably estimates glottal flow waveforms and lower formant frequencies. Results obtained for higher formant frequencies indicate that research on more accurate voice source models and their interaction with the VT is necessary to improve the source-filter separation. The proposed optimization approach promises to be a useful tool for future research addressing this topic. |
doi_str_mv | 10.1109/TASL.2013.2255275 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TASL_2013_2255275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6488745</ieee_id><sourcerecordid>27572193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-2cc3cbdc36e66567afb081af906d12eb20bcc0dd18f9ff0e305c933e11d0b55b3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAYiNNyxTPHbsJMuqtDxUqYu2bCNnYiOjkFS2iwRfT6JUXc1I99x5XELugc0AWPG0m2_XM85AzDiXkmfygkxAyjzJCp5enntQ1-QmhC_GUqFSmBD93rk20m139GiSlWui8XRziO7b_enoupbaztM54tHraOhHh7qhO68x0mXoqZHZB9d-0mdnrfGmja5nlj9dcxzEW3JldRPM3alOyX613C1ek_Xm5W0xXyeYsjQmHFFgVaNQRimpMm0rloO2BVM1cFNxViGyuobcFtYyI5jEQggDULNKykpMCYxz0XcheGPLg-_v878lsHLIqBwyKoeMylNGvedx9Bx06B-zXrfowtnYIxmHfsuUPIycM8acZZXmeZZK8Q9iunH3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Joint Source-Filter Optimization for Accurate Vocal Tract Estimation Using Differential Evolution</title><source>IEEE Xplore</source><creator>Schleusing, O. ; Kinnunen, T. ; Story, B. ; Vesin, J-M</creator><creatorcontrib>Schleusing, O. ; Kinnunen, T. ; Story, B. ; Vesin, J-M</creatorcontrib><description>In this work, we present a joint source-filter optimization approach for separating voiced speech into vocal tract (VT) and voice source components. The presented method is pitch-synchronous and thereby exhibits a high robustness against vocal jitter, shimmer and other glottal variations while covering various voice qualities. The voice source is modeled using the Liljencrants-Fant (LF) model, which is integrated into a time-varying auto-regressive speech production model with exogenous input (ARX). The non-convex optimization problem of finding the optimal model parameters is addressed by a heuristic, evolutionary optimization method called differential evolution. The optimization method is first validated in a series of experiments with synthetic speech. Estimated glottal source and VT parameters are the criteria used for comparison with the iterative adaptive inverse filter (IAIF) method and the linear prediction (LP) method under varying conditions such as jitter, fundamental frequency ( f 0 ) as well as environmental and glottal noise. The results show that the proposed method largely reduces the bias and standard deviation of estimated VT coefficients and glottal source parameters. Furthermore, the performance of the source-filter separation is evaluated in experiments using speech generated with a physical model of speech production. The proposed method reliably estimates glottal flow waveforms and lower formant frequencies. Results obtained for higher formant frequencies indicate that research on more accurate voice source models and their interaction with the VT is necessary to improve the source-filter separation. The proposed optimization approach promises to be a useful tool for future research addressing this topic.</description><identifier>ISSN: 1558-7916</identifier><identifier>EISSN: 1558-7924</identifier><identifier>DOI: 10.1109/TASL.2013.2255275</identifier><identifier>CODEN: ITASD8</identifier><language>eng</language><publisher>Piscataway, NJ: IEEE</publisher><subject>Applied sciences ; Detection, estimation, filtering, equalization, prediction ; differential evolution ; Estimation ; Exact sciences and technology ; Global optimization ; glottal inverse filtering ; Information, signal and communications theory ; joint source-filter optimization ; Joints ; Mathematical model ; Optimization ; Production ; Signal and communications theory ; Signal processing ; Signal, noise ; Speech ; Speech processing ; Telecommunications and information theory ; time-varying vocal tract estimation ; Vectors</subject><ispartof>IEEE transactions on audio, speech, and language processing, 2013-08, Vol.21 (8), p.1560-1572</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-2cc3cbdc36e66567afb081af906d12eb20bcc0dd18f9ff0e305c933e11d0b55b3</citedby><cites>FETCH-LOGICAL-c404t-2cc3cbdc36e66567afb081af906d12eb20bcc0dd18f9ff0e305c933e11d0b55b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6488745$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6488745$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27572193$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schleusing, O.</creatorcontrib><creatorcontrib>Kinnunen, T.</creatorcontrib><creatorcontrib>Story, B.</creatorcontrib><creatorcontrib>Vesin, J-M</creatorcontrib><title>Joint Source-Filter Optimization for Accurate Vocal Tract Estimation Using Differential Evolution</title><title>IEEE transactions on audio, speech, and language processing</title><addtitle>TASL</addtitle><description>In this work, we present a joint source-filter optimization approach for separating voiced speech into vocal tract (VT) and voice source components. The presented method is pitch-synchronous and thereby exhibits a high robustness against vocal jitter, shimmer and other glottal variations while covering various voice qualities. The voice source is modeled using the Liljencrants-Fant (LF) model, which is integrated into a time-varying auto-regressive speech production model with exogenous input (ARX). The non-convex optimization problem of finding the optimal model parameters is addressed by a heuristic, evolutionary optimization method called differential evolution. The optimization method is first validated in a series of experiments with synthetic speech. Estimated glottal source and VT parameters are the criteria used for comparison with the iterative adaptive inverse filter (IAIF) method and the linear prediction (LP) method under varying conditions such as jitter, fundamental frequency ( f 0 ) as well as environmental and glottal noise. The results show that the proposed method largely reduces the bias and standard deviation of estimated VT coefficients and glottal source parameters. Furthermore, the performance of the source-filter separation is evaluated in experiments using speech generated with a physical model of speech production. The proposed method reliably estimates glottal flow waveforms and lower formant frequencies. Results obtained for higher formant frequencies indicate that research on more accurate voice source models and their interaction with the VT is necessary to improve the source-filter separation. The proposed optimization approach promises to be a useful tool for future research addressing this topic.</description><subject>Applied sciences</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>differential evolution</subject><subject>Estimation</subject><subject>Exact sciences and technology</subject><subject>Global optimization</subject><subject>glottal inverse filtering</subject><subject>Information, signal and communications theory</subject><subject>joint source-filter optimization</subject><subject>Joints</subject><subject>Mathematical model</subject><subject>Optimization</subject><subject>Production</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Speech</subject><subject>Speech processing</subject><subject>Telecommunications and information theory</subject><subject>time-varying vocal tract estimation</subject><subject>Vectors</subject><issn>1558-7916</issn><issn>1558-7924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwAYiNNyxTPHbsJMuqtDxUqYu2bCNnYiOjkFS2iwRfT6JUXc1I99x5XELugc0AWPG0m2_XM85AzDiXkmfygkxAyjzJCp5enntQ1-QmhC_GUqFSmBD93rk20m139GiSlWui8XRziO7b_enoupbaztM54tHraOhHh7qhO68x0mXoqZHZB9d-0mdnrfGmja5nlj9dcxzEW3JldRPM3alOyX613C1ek_Xm5W0xXyeYsjQmHFFgVaNQRimpMm0rloO2BVM1cFNxViGyuobcFtYyI5jEQggDULNKykpMCYxz0XcheGPLg-_v878lsHLIqBwyKoeMylNGvedx9Bx06B-zXrfowtnYIxmHfsuUPIycM8acZZXmeZZK8Q9iunH3</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Schleusing, O.</creator><creator>Kinnunen, T.</creator><creator>Story, B.</creator><creator>Vesin, J-M</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130801</creationdate><title>Joint Source-Filter Optimization for Accurate Vocal Tract Estimation Using Differential Evolution</title><author>Schleusing, O. ; Kinnunen, T. ; Story, B. ; Vesin, J-M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-2cc3cbdc36e66567afb081af906d12eb20bcc0dd18f9ff0e305c933e11d0b55b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>differential evolution</topic><topic>Estimation</topic><topic>Exact sciences and technology</topic><topic>Global optimization</topic><topic>glottal inverse filtering</topic><topic>Information, signal and communications theory</topic><topic>joint source-filter optimization</topic><topic>Joints</topic><topic>Mathematical model</topic><topic>Optimization</topic><topic>Production</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Speech</topic><topic>Speech processing</topic><topic>Telecommunications and information theory</topic><topic>time-varying vocal tract estimation</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schleusing, O.</creatorcontrib><creatorcontrib>Kinnunen, T.</creatorcontrib><creatorcontrib>Story, B.</creatorcontrib><creatorcontrib>Vesin, J-M</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on audio, speech, and language processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schleusing, O.</au><au>Kinnunen, T.</au><au>Story, B.</au><au>Vesin, J-M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Source-Filter Optimization for Accurate Vocal Tract Estimation Using Differential Evolution</atitle><jtitle>IEEE transactions on audio, speech, and language processing</jtitle><stitle>TASL</stitle><date>2013-08-01</date><risdate>2013</risdate><volume>21</volume><issue>8</issue><spage>1560</spage><epage>1572</epage><pages>1560-1572</pages><issn>1558-7916</issn><eissn>1558-7924</eissn><coden>ITASD8</coden><abstract>In this work, we present a joint source-filter optimization approach for separating voiced speech into vocal tract (VT) and voice source components. The presented method is pitch-synchronous and thereby exhibits a high robustness against vocal jitter, shimmer and other glottal variations while covering various voice qualities. The voice source is modeled using the Liljencrants-Fant (LF) model, which is integrated into a time-varying auto-regressive speech production model with exogenous input (ARX). The non-convex optimization problem of finding the optimal model parameters is addressed by a heuristic, evolutionary optimization method called differential evolution. The optimization method is first validated in a series of experiments with synthetic speech. Estimated glottal source and VT parameters are the criteria used for comparison with the iterative adaptive inverse filter (IAIF) method and the linear prediction (LP) method under varying conditions such as jitter, fundamental frequency ( f 0 ) as well as environmental and glottal noise. The results show that the proposed method largely reduces the bias and standard deviation of estimated VT coefficients and glottal source parameters. Furthermore, the performance of the source-filter separation is evaluated in experiments using speech generated with a physical model of speech production. The proposed method reliably estimates glottal flow waveforms and lower formant frequencies. Results obtained for higher formant frequencies indicate that research on more accurate voice source models and their interaction with the VT is necessary to improve the source-filter separation. The proposed optimization approach promises to be a useful tool for future research addressing this topic.</abstract><cop>Piscataway, NJ</cop><pub>IEEE</pub><doi>10.1109/TASL.2013.2255275</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1558-7916 |
ispartof | IEEE transactions on audio, speech, and language processing, 2013-08, Vol.21 (8), p.1560-1572 |
issn | 1558-7916 1558-7924 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TASL_2013_2255275 |
source | IEEE Xplore |
subjects | Applied sciences Detection, estimation, filtering, equalization, prediction differential evolution Estimation Exact sciences and technology Global optimization glottal inverse filtering Information, signal and communications theory joint source-filter optimization Joints Mathematical model Optimization Production Signal and communications theory Signal processing Signal, noise Speech Speech processing Telecommunications and information theory time-varying vocal tract estimation Vectors |
title | Joint Source-Filter Optimization for Accurate Vocal Tract Estimation Using Differential Evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A03%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Source-Filter%20Optimization%20for%20Accurate%20Vocal%20Tract%20Estimation%20Using%20Differential%20Evolution&rft.jtitle=IEEE%20transactions%20on%20audio,%20speech,%20and%20language%20processing&rft.au=Schleusing,%20O.&rft.date=2013-08-01&rft.volume=21&rft.issue=8&rft.spage=1560&rft.epage=1572&rft.pages=1560-1572&rft.issn=1558-7916&rft.eissn=1558-7924&rft.coden=ITASD8&rft_id=info:doi/10.1109/TASL.2013.2255275&rft_dat=%3Cpascalfrancis_RIE%3E27572193%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6488745&rfr_iscdi=true |