Joint Source-Filter Optimization for Accurate Vocal Tract Estimation Using Differential Evolution

In this work, we present a joint source-filter optimization approach for separating voiced speech into vocal tract (VT) and voice source components. The presented method is pitch-synchronous and thereby exhibits a high robustness against vocal jitter, shimmer and other glottal variations while cover...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on audio, speech, and language processing speech, and language processing, 2013-08, Vol.21 (8), p.1560-1572
Hauptverfasser: Schleusing, O., Kinnunen, T., Story, B., Vesin, J-M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1572
container_issue 8
container_start_page 1560
container_title IEEE transactions on audio, speech, and language processing
container_volume 21
creator Schleusing, O.
Kinnunen, T.
Story, B.
Vesin, J-M
description In this work, we present a joint source-filter optimization approach for separating voiced speech into vocal tract (VT) and voice source components. The presented method is pitch-synchronous and thereby exhibits a high robustness against vocal jitter, shimmer and other glottal variations while covering various voice qualities. The voice source is modeled using the Liljencrants-Fant (LF) model, which is integrated into a time-varying auto-regressive speech production model with exogenous input (ARX). The non-convex optimization problem of finding the optimal model parameters is addressed by a heuristic, evolutionary optimization method called differential evolution. The optimization method is first validated in a series of experiments with synthetic speech. Estimated glottal source and VT parameters are the criteria used for comparison with the iterative adaptive inverse filter (IAIF) method and the linear prediction (LP) method under varying conditions such as jitter, fundamental frequency ( f 0 ) as well as environmental and glottal noise. The results show that the proposed method largely reduces the bias and standard deviation of estimated VT coefficients and glottal source parameters. Furthermore, the performance of the source-filter separation is evaluated in experiments using speech generated with a physical model of speech production. The proposed method reliably estimates glottal flow waveforms and lower formant frequencies. Results obtained for higher formant frequencies indicate that research on more accurate voice source models and their interaction with the VT is necessary to improve the source-filter separation. The proposed optimization approach promises to be a useful tool for future research addressing this topic.
doi_str_mv 10.1109/TASL.2013.2255275
format Article
fullrecord <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TASL_2013_2255275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6488745</ieee_id><sourcerecordid>27572193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-2cc3cbdc36e66567afb081af906d12eb20bcc0dd18f9ff0e305c933e11d0b55b3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAYiNNyxTPHbsJMuqtDxUqYu2bCNnYiOjkFS2iwRfT6JUXc1I99x5XELugc0AWPG0m2_XM85AzDiXkmfygkxAyjzJCp5enntQ1-QmhC_GUqFSmBD93rk20m139GiSlWui8XRziO7b_enoupbaztM54tHraOhHh7qhO68x0mXoqZHZB9d-0mdnrfGmja5nlj9dcxzEW3JldRPM3alOyX613C1ek_Xm5W0xXyeYsjQmHFFgVaNQRimpMm0rloO2BVM1cFNxViGyuobcFtYyI5jEQggDULNKykpMCYxz0XcheGPLg-_v878lsHLIqBwyKoeMylNGvedx9Bx06B-zXrfowtnYIxmHfsuUPIycM8acZZXmeZZK8Q9iunH3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Joint Source-Filter Optimization for Accurate Vocal Tract Estimation Using Differential Evolution</title><source>IEEE Xplore</source><creator>Schleusing, O. ; Kinnunen, T. ; Story, B. ; Vesin, J-M</creator><creatorcontrib>Schleusing, O. ; Kinnunen, T. ; Story, B. ; Vesin, J-M</creatorcontrib><description>In this work, we present a joint source-filter optimization approach for separating voiced speech into vocal tract (VT) and voice source components. The presented method is pitch-synchronous and thereby exhibits a high robustness against vocal jitter, shimmer and other glottal variations while covering various voice qualities. The voice source is modeled using the Liljencrants-Fant (LF) model, which is integrated into a time-varying auto-regressive speech production model with exogenous input (ARX). The non-convex optimization problem of finding the optimal model parameters is addressed by a heuristic, evolutionary optimization method called differential evolution. The optimization method is first validated in a series of experiments with synthetic speech. Estimated glottal source and VT parameters are the criteria used for comparison with the iterative adaptive inverse filter (IAIF) method and the linear prediction (LP) method under varying conditions such as jitter, fundamental frequency ( f 0 ) as well as environmental and glottal noise. The results show that the proposed method largely reduces the bias and standard deviation of estimated VT coefficients and glottal source parameters. Furthermore, the performance of the source-filter separation is evaluated in experiments using speech generated with a physical model of speech production. The proposed method reliably estimates glottal flow waveforms and lower formant frequencies. Results obtained for higher formant frequencies indicate that research on more accurate voice source models and their interaction with the VT is necessary to improve the source-filter separation. The proposed optimization approach promises to be a useful tool for future research addressing this topic.</description><identifier>ISSN: 1558-7916</identifier><identifier>EISSN: 1558-7924</identifier><identifier>DOI: 10.1109/TASL.2013.2255275</identifier><identifier>CODEN: ITASD8</identifier><language>eng</language><publisher>Piscataway, NJ: IEEE</publisher><subject>Applied sciences ; Detection, estimation, filtering, equalization, prediction ; differential evolution ; Estimation ; Exact sciences and technology ; Global optimization ; glottal inverse filtering ; Information, signal and communications theory ; joint source-filter optimization ; Joints ; Mathematical model ; Optimization ; Production ; Signal and communications theory ; Signal processing ; Signal, noise ; Speech ; Speech processing ; Telecommunications and information theory ; time-varying vocal tract estimation ; Vectors</subject><ispartof>IEEE transactions on audio, speech, and language processing, 2013-08, Vol.21 (8), p.1560-1572</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-2cc3cbdc36e66567afb081af906d12eb20bcc0dd18f9ff0e305c933e11d0b55b3</citedby><cites>FETCH-LOGICAL-c404t-2cc3cbdc36e66567afb081af906d12eb20bcc0dd18f9ff0e305c933e11d0b55b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6488745$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6488745$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27572193$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schleusing, O.</creatorcontrib><creatorcontrib>Kinnunen, T.</creatorcontrib><creatorcontrib>Story, B.</creatorcontrib><creatorcontrib>Vesin, J-M</creatorcontrib><title>Joint Source-Filter Optimization for Accurate Vocal Tract Estimation Using Differential Evolution</title><title>IEEE transactions on audio, speech, and language processing</title><addtitle>TASL</addtitle><description>In this work, we present a joint source-filter optimization approach for separating voiced speech into vocal tract (VT) and voice source components. The presented method is pitch-synchronous and thereby exhibits a high robustness against vocal jitter, shimmer and other glottal variations while covering various voice qualities. The voice source is modeled using the Liljencrants-Fant (LF) model, which is integrated into a time-varying auto-regressive speech production model with exogenous input (ARX). The non-convex optimization problem of finding the optimal model parameters is addressed by a heuristic, evolutionary optimization method called differential evolution. The optimization method is first validated in a series of experiments with synthetic speech. Estimated glottal source and VT parameters are the criteria used for comparison with the iterative adaptive inverse filter (IAIF) method and the linear prediction (LP) method under varying conditions such as jitter, fundamental frequency ( f 0 ) as well as environmental and glottal noise. The results show that the proposed method largely reduces the bias and standard deviation of estimated VT coefficients and glottal source parameters. Furthermore, the performance of the source-filter separation is evaluated in experiments using speech generated with a physical model of speech production. The proposed method reliably estimates glottal flow waveforms and lower formant frequencies. Results obtained for higher formant frequencies indicate that research on more accurate voice source models and their interaction with the VT is necessary to improve the source-filter separation. The proposed optimization approach promises to be a useful tool for future research addressing this topic.</description><subject>Applied sciences</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>differential evolution</subject><subject>Estimation</subject><subject>Exact sciences and technology</subject><subject>Global optimization</subject><subject>glottal inverse filtering</subject><subject>Information, signal and communications theory</subject><subject>joint source-filter optimization</subject><subject>Joints</subject><subject>Mathematical model</subject><subject>Optimization</subject><subject>Production</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Speech</subject><subject>Speech processing</subject><subject>Telecommunications and information theory</subject><subject>time-varying vocal tract estimation</subject><subject>Vectors</subject><issn>1558-7916</issn><issn>1558-7924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwAYiNNyxTPHbsJMuqtDxUqYu2bCNnYiOjkFS2iwRfT6JUXc1I99x5XELugc0AWPG0m2_XM85AzDiXkmfygkxAyjzJCp5enntQ1-QmhC_GUqFSmBD93rk20m139GiSlWui8XRziO7b_enoupbaztM54tHraOhHh7qhO68x0mXoqZHZB9d-0mdnrfGmja5nlj9dcxzEW3JldRPM3alOyX613C1ek_Xm5W0xXyeYsjQmHFFgVaNQRimpMm0rloO2BVM1cFNxViGyuobcFtYyI5jEQggDULNKykpMCYxz0XcheGPLg-_v878lsHLIqBwyKoeMylNGvedx9Bx06B-zXrfowtnYIxmHfsuUPIycM8acZZXmeZZK8Q9iunH3</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Schleusing, O.</creator><creator>Kinnunen, T.</creator><creator>Story, B.</creator><creator>Vesin, J-M</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130801</creationdate><title>Joint Source-Filter Optimization for Accurate Vocal Tract Estimation Using Differential Evolution</title><author>Schleusing, O. ; Kinnunen, T. ; Story, B. ; Vesin, J-M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-2cc3cbdc36e66567afb081af906d12eb20bcc0dd18f9ff0e305c933e11d0b55b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>differential evolution</topic><topic>Estimation</topic><topic>Exact sciences and technology</topic><topic>Global optimization</topic><topic>glottal inverse filtering</topic><topic>Information, signal and communications theory</topic><topic>joint source-filter optimization</topic><topic>Joints</topic><topic>Mathematical model</topic><topic>Optimization</topic><topic>Production</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Speech</topic><topic>Speech processing</topic><topic>Telecommunications and information theory</topic><topic>time-varying vocal tract estimation</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schleusing, O.</creatorcontrib><creatorcontrib>Kinnunen, T.</creatorcontrib><creatorcontrib>Story, B.</creatorcontrib><creatorcontrib>Vesin, J-M</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on audio, speech, and language processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schleusing, O.</au><au>Kinnunen, T.</au><au>Story, B.</au><au>Vesin, J-M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Source-Filter Optimization for Accurate Vocal Tract Estimation Using Differential Evolution</atitle><jtitle>IEEE transactions on audio, speech, and language processing</jtitle><stitle>TASL</stitle><date>2013-08-01</date><risdate>2013</risdate><volume>21</volume><issue>8</issue><spage>1560</spage><epage>1572</epage><pages>1560-1572</pages><issn>1558-7916</issn><eissn>1558-7924</eissn><coden>ITASD8</coden><abstract>In this work, we present a joint source-filter optimization approach for separating voiced speech into vocal tract (VT) and voice source components. The presented method is pitch-synchronous and thereby exhibits a high robustness against vocal jitter, shimmer and other glottal variations while covering various voice qualities. The voice source is modeled using the Liljencrants-Fant (LF) model, which is integrated into a time-varying auto-regressive speech production model with exogenous input (ARX). The non-convex optimization problem of finding the optimal model parameters is addressed by a heuristic, evolutionary optimization method called differential evolution. The optimization method is first validated in a series of experiments with synthetic speech. Estimated glottal source and VT parameters are the criteria used for comparison with the iterative adaptive inverse filter (IAIF) method and the linear prediction (LP) method under varying conditions such as jitter, fundamental frequency ( f 0 ) as well as environmental and glottal noise. The results show that the proposed method largely reduces the bias and standard deviation of estimated VT coefficients and glottal source parameters. Furthermore, the performance of the source-filter separation is evaluated in experiments using speech generated with a physical model of speech production. The proposed method reliably estimates glottal flow waveforms and lower formant frequencies. Results obtained for higher formant frequencies indicate that research on more accurate voice source models and their interaction with the VT is necessary to improve the source-filter separation. The proposed optimization approach promises to be a useful tool for future research addressing this topic.</abstract><cop>Piscataway, NJ</cop><pub>IEEE</pub><doi>10.1109/TASL.2013.2255275</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1558-7916
ispartof IEEE transactions on audio, speech, and language processing, 2013-08, Vol.21 (8), p.1560-1572
issn 1558-7916
1558-7924
language eng
recordid cdi_crossref_primary_10_1109_TASL_2013_2255275
source IEEE Xplore
subjects Applied sciences
Detection, estimation, filtering, equalization, prediction
differential evolution
Estimation
Exact sciences and technology
Global optimization
glottal inverse filtering
Information, signal and communications theory
joint source-filter optimization
Joints
Mathematical model
Optimization
Production
Signal and communications theory
Signal processing
Signal, noise
Speech
Speech processing
Telecommunications and information theory
time-varying vocal tract estimation
Vectors
title Joint Source-Filter Optimization for Accurate Vocal Tract Estimation Using Differential Evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A03%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Source-Filter%20Optimization%20for%20Accurate%20Vocal%20Tract%20Estimation%20Using%20Differential%20Evolution&rft.jtitle=IEEE%20transactions%20on%20audio,%20speech,%20and%20language%20processing&rft.au=Schleusing,%20O.&rft.date=2013-08-01&rft.volume=21&rft.issue=8&rft.spage=1560&rft.epage=1572&rft.pages=1560-1572&rft.issn=1558-7916&rft.eissn=1558-7924&rft.coden=ITASD8&rft_id=info:doi/10.1109/TASL.2013.2255275&rft_dat=%3Cpascalfrancis_RIE%3E27572193%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6488745&rfr_iscdi=true