Short-Term Spatio-Temporal Clustering Applied to Multiple Moving Speakers
Distant microphones permit to process spontaneous multiparty speech with very little constraints on speakers, as opposed to close-talking microphones. Minimizing the constraints on speakers permits a large diversity of applications, including meeting summarization and browsing, surveillance, hearing...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on audio, speech, and language processing speech, and language processing, 2007-07, Vol.15 (5), p.1696-1710 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1710 |
---|---|
container_issue | 5 |
container_start_page | 1696 |
container_title | IEEE transactions on audio, speech, and language processing |
container_volume | 15 |
creator | Lathoud, G. Odobez, J.-M. |
description | Distant microphones permit to process spontaneous multiparty speech with very little constraints on speakers, as opposed to close-talking microphones. Minimizing the constraints on speakers permits a large diversity of applications, including meeting summarization and browsing, surveillance, hearing aids, and more natural human-machine interaction. Such applications of distant microphones require to determine where and when the speakers are talking. This is inherently a multisource problem, because of background noise sources, as well as the natural tendency of multiple speakers to talk over each other. Moreover, spontaneous speech utterances are highly discontinuous, which makes it difficult to track the multiple speakers with classical filtering approaches, such as Kalman filtering of particle filters. As an alternative, this paper proposes a probabilistic framework to determine the trajectories of multiple moving speakers in the short-term only, i.e., only while they speak. Instantaneous location estimates that are close in space and time are grouped into ldquoshort-term clustersrdquo in a principled manner. Each short-term cluster determines the precise start and end times of an utterance and a short-term spatial trajectory. Contrastive experiments clearly show the benefit of using short-term clustering, on real indoor recordings with seated speakers in meetings, as well as multiple moving speakers. |
doi_str_mv | 10.1109/TASL.2007.896667 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TASL_2007_896667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4244525</ieee_id><sourcerecordid>2568814031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-cb2e2427786834acd574bce990749c439a063bb435c6b642764135a0acd01f883</originalsourceid><addsrcrecordid>eNpdkM9LwzAcxYsoOKd3wUsR9NaZNL-a4xj-GGx46DyHNEs1M11q0gr-96Z0TPD0ffD9vMfjJck1BDMIAX_YzMvVLAeAzQpOKWUnyQQSUmSM5_j0qCE9Ty5C2AGAEcVwkizLD-e7bKN9k5at7IyLummdlzZd2D502pv9ezpvW2v0Nu1cuu5tZ1qr07X7Hl5lq-Wn9uEyOaulDfrqcKfJ29PjZvGSrV6fl4v5KlOIwC5TVa5znDNW0AJhqbaE4UppzgHDXGHEJaCoqjAiilY0grEmIhJEEsC6KNA0uR9zW---eh060ZigtLVyr10fBKKIMAhZBG__gTvX-33sJjhkGAHGQYTACCnvQvC6Fq03jfQ_AgIxDCuGYcUwrBiHjZa7Q64MStray70y4c9XFAxBTiJ3M3JGa3184xxjkhP0C3ANf78</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>917430790</pqid></control><display><type>article</type><title>Short-Term Spatio-Temporal Clustering Applied to Multiple Moving Speakers</title><source>IEEE Electronic Library (IEL)</source><creator>Lathoud, G. ; Odobez, J.-M.</creator><creatorcontrib>Lathoud, G. ; Odobez, J.-M.</creatorcontrib><description>Distant microphones permit to process spontaneous multiparty speech with very little constraints on speakers, as opposed to close-talking microphones. Minimizing the constraints on speakers permits a large diversity of applications, including meeting summarization and browsing, surveillance, hearing aids, and more natural human-machine interaction. Such applications of distant microphones require to determine where and when the speakers are talking. This is inherently a multisource problem, because of background noise sources, as well as the natural tendency of multiple speakers to talk over each other. Moreover, spontaneous speech utterances are highly discontinuous, which makes it difficult to track the multiple speakers with classical filtering approaches, such as Kalman filtering of particle filters. As an alternative, this paper proposes a probabilistic framework to determine the trajectories of multiple moving speakers in the short-term only, i.e., only while they speak. Instantaneous location estimates that are close in space and time are grouped into ldquoshort-term clustersrdquo in a principled manner. Each short-term cluster determines the precise start and end times of an utterance and a short-term spatial trajectory. Contrastive experiments clearly show the benefit of using short-term clustering, on real indoor recordings with seated speakers in meetings, as well as multiple moving speakers.</description><identifier>ISSN: 1558-7916</identifier><identifier>ISSN: 2329-9290</identifier><identifier>EISSN: 1558-7924</identifier><identifier>EISSN: 2329-9304</identifier><identifier>DOI: 10.1109/TASL.2007.896667</identifier><identifier>CODEN: ITASD8</identifier><language>eng</language><publisher>Piscataway, NJ: IEEE</publisher><subject>Applied sciences ; Background noise ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Filtering ; Hearing aids ; Information, signal and communications theory ; Kalman filters ; Localization ; Man machine systems ; Microphones ; multiple acoustic sources ; Particle filters ; Particle tracking ; short-term clustering ; Signal and communications theory ; Signal processing ; Signal representation. Spectral analysis ; Signal, noise ; Speech processing ; speech segmentation ; Surveillance ; Telecommunications and information theory ; tracking</subject><ispartof>IEEE transactions on audio, speech, and language processing, 2007-07, Vol.15 (5), p.1696-1710</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-cb2e2427786834acd574bce990749c439a063bb435c6b642764135a0acd01f883</citedby><cites>FETCH-LOGICAL-c351t-cb2e2427786834acd574bce990749c439a063bb435c6b642764135a0acd01f883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4244525$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4244525$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18873195$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lathoud, G.</creatorcontrib><creatorcontrib>Odobez, J.-M.</creatorcontrib><title>Short-Term Spatio-Temporal Clustering Applied to Multiple Moving Speakers</title><title>IEEE transactions on audio, speech, and language processing</title><addtitle>TASL</addtitle><description>Distant microphones permit to process spontaneous multiparty speech with very little constraints on speakers, as opposed to close-talking microphones. Minimizing the constraints on speakers permits a large diversity of applications, including meeting summarization and browsing, surveillance, hearing aids, and more natural human-machine interaction. Such applications of distant microphones require to determine where and when the speakers are talking. This is inherently a multisource problem, because of background noise sources, as well as the natural tendency of multiple speakers to talk over each other. Moreover, spontaneous speech utterances are highly discontinuous, which makes it difficult to track the multiple speakers with classical filtering approaches, such as Kalman filtering of particle filters. As an alternative, this paper proposes a probabilistic framework to determine the trajectories of multiple moving speakers in the short-term only, i.e., only while they speak. Instantaneous location estimates that are close in space and time are grouped into ldquoshort-term clustersrdquo in a principled manner. Each short-term cluster determines the precise start and end times of an utterance and a short-term spatial trajectory. Contrastive experiments clearly show the benefit of using short-term clustering, on real indoor recordings with seated speakers in meetings, as well as multiple moving speakers.</description><subject>Applied sciences</subject><subject>Background noise</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Filtering</subject><subject>Hearing aids</subject><subject>Information, signal and communications theory</subject><subject>Kalman filters</subject><subject>Localization</subject><subject>Man machine systems</subject><subject>Microphones</subject><subject>multiple acoustic sources</subject><subject>Particle filters</subject><subject>Particle tracking</subject><subject>short-term clustering</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>Speech processing</subject><subject>speech segmentation</subject><subject>Surveillance</subject><subject>Telecommunications and information theory</subject><subject>tracking</subject><issn>1558-7916</issn><issn>2329-9290</issn><issn>1558-7924</issn><issn>2329-9304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM9LwzAcxYsoOKd3wUsR9NaZNL-a4xj-GGx46DyHNEs1M11q0gr-96Z0TPD0ffD9vMfjJck1BDMIAX_YzMvVLAeAzQpOKWUnyQQSUmSM5_j0qCE9Ty5C2AGAEcVwkizLD-e7bKN9k5at7IyLummdlzZd2D502pv9ezpvW2v0Nu1cuu5tZ1qr07X7Hl5lq-Wn9uEyOaulDfrqcKfJ29PjZvGSrV6fl4v5KlOIwC5TVa5znDNW0AJhqbaE4UppzgHDXGHEJaCoqjAiilY0grEmIhJEEsC6KNA0uR9zW---eh060ZigtLVyr10fBKKIMAhZBG__gTvX-33sJjhkGAHGQYTACCnvQvC6Fq03jfQ_AgIxDCuGYcUwrBiHjZa7Q64MStray70y4c9XFAxBTiJ3M3JGa3184xxjkhP0C3ANf78</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Lathoud, G.</creator><creator>Odobez, J.-M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070701</creationdate><title>Short-Term Spatio-Temporal Clustering Applied to Multiple Moving Speakers</title><author>Lathoud, G. ; Odobez, J.-M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-cb2e2427786834acd574bce990749c439a063bb435c6b642764135a0acd01f883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Background noise</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Filtering</topic><topic>Hearing aids</topic><topic>Information, signal and communications theory</topic><topic>Kalman filters</topic><topic>Localization</topic><topic>Man machine systems</topic><topic>Microphones</topic><topic>multiple acoustic sources</topic><topic>Particle filters</topic><topic>Particle tracking</topic><topic>short-term clustering</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>Speech processing</topic><topic>speech segmentation</topic><topic>Surveillance</topic><topic>Telecommunications and information theory</topic><topic>tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lathoud, G.</creatorcontrib><creatorcontrib>Odobez, J.-M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on audio, speech, and language processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lathoud, G.</au><au>Odobez, J.-M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short-Term Spatio-Temporal Clustering Applied to Multiple Moving Speakers</atitle><jtitle>IEEE transactions on audio, speech, and language processing</jtitle><stitle>TASL</stitle><date>2007-07-01</date><risdate>2007</risdate><volume>15</volume><issue>5</issue><spage>1696</spage><epage>1710</epage><pages>1696-1710</pages><issn>1558-7916</issn><issn>2329-9290</issn><eissn>1558-7924</eissn><eissn>2329-9304</eissn><coden>ITASD8</coden><abstract>Distant microphones permit to process spontaneous multiparty speech with very little constraints on speakers, as opposed to close-talking microphones. Minimizing the constraints on speakers permits a large diversity of applications, including meeting summarization and browsing, surveillance, hearing aids, and more natural human-machine interaction. Such applications of distant microphones require to determine where and when the speakers are talking. This is inherently a multisource problem, because of background noise sources, as well as the natural tendency of multiple speakers to talk over each other. Moreover, spontaneous speech utterances are highly discontinuous, which makes it difficult to track the multiple speakers with classical filtering approaches, such as Kalman filtering of particle filters. As an alternative, this paper proposes a probabilistic framework to determine the trajectories of multiple moving speakers in the short-term only, i.e., only while they speak. Instantaneous location estimates that are close in space and time are grouped into ldquoshort-term clustersrdquo in a principled manner. Each short-term cluster determines the precise start and end times of an utterance and a short-term spatial trajectory. Contrastive experiments clearly show the benefit of using short-term clustering, on real indoor recordings with seated speakers in meetings, as well as multiple moving speakers.</abstract><cop>Piscataway, NJ</cop><pub>IEEE</pub><doi>10.1109/TASL.2007.896667</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1558-7916 |
ispartof | IEEE transactions on audio, speech, and language processing, 2007-07, Vol.15 (5), p.1696-1710 |
issn | 1558-7916 2329-9290 1558-7924 2329-9304 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TASL_2007_896667 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Background noise Detection, estimation, filtering, equalization, prediction Exact sciences and technology Filtering Hearing aids Information, signal and communications theory Kalman filters Localization Man machine systems Microphones multiple acoustic sources Particle filters Particle tracking short-term clustering Signal and communications theory Signal processing Signal representation. Spectral analysis Signal, noise Speech processing speech segmentation Surveillance Telecommunications and information theory tracking |
title | Short-Term Spatio-Temporal Clustering Applied to Multiple Moving Speakers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T19%3A37%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short-Term%20Spatio-Temporal%20Clustering%20Applied%20to%20Multiple%20Moving%20Speakers&rft.jtitle=IEEE%20transactions%20on%20audio,%20speech,%20and%20language%20processing&rft.au=Lathoud,%20G.&rft.date=2007-07-01&rft.volume=15&rft.issue=5&rft.spage=1696&rft.epage=1710&rft.pages=1696-1710&rft.issn=1558-7916&rft.eissn=1558-7924&rft.coden=ITASD8&rft_id=info:doi/10.1109/TASL.2007.896667&rft_dat=%3Cproquest_RIE%3E2568814031%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=917430790&rft_id=info:pmid/&rft_ieee_id=4244525&rfr_iscdi=true |