Reinforcement Learning-Based Dialogue Guided Event Extraction to Exploit Argument Relations

Event extraction is a ftask for natural language processing. Finding the roles of event arguments like event participants is essential for event extraction. However, doing so for real-life event descriptions is challenging because an argument's role often varies in different contexts. While the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on audio, speech, and language processing speech, and language processing, 2022, Vol.30, p.520-533
Hauptverfasser: Li, Qian, Peng, Hao, Li, Jianxin, Wu, Jia, Ning, Yuanxing, Wang, Lihong, Yu, Philip S., Wang, Zheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 533
container_issue
container_start_page 520
container_title IEEE/ACM transactions on audio, speech, and language processing
container_volume 30
creator Li, Qian
Peng, Hao
Li, Jianxin
Wu, Jia
Ning, Yuanxing
Wang, Lihong
Yu, Philip S.
Wang, Zheng
description Event extraction is a ftask for natural language processing. Finding the roles of event arguments like event participants is essential for event extraction. However, doing so for real-life event descriptions is challenging because an argument's role often varies in different contexts. While the relationship and interactions between multiple arguments are useful for settling the argument roles, such information is largely ignored by existing approaches. This paper presents a better approach for event extraction by explicitly utilizing the relationships of event arguments. We achieve this through a carefully designed task-oriented dialogue system. To model the argument relation, we employ reinforcement learning and incremental learning to extract multiple arguments via a multi-turned, iterative process. Our approach leverages knowledge of the already extracted arguments of the same sentence to determine the role of arguments that would be difficult to decide individually. It then uses the newly obtained information to improve the decisions of previously extracted arguments. This two-way feedback process allows us to exploit the argument relations to effectively settle argument roles, leading to better sentence understanding and event extraction. Experimental results show that our approach consistently outperforms seven state-of-the-art event extraction methods for the classification of events and argument role and argument identification.
doi_str_mv 10.1109/TASLP.2021.3138670
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TASLP_2021_3138670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9664363</ieee_id><sourcerecordid>2623469413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-71598aa7c327f108f4873066dd08a505a4f23293a310dec5a945451862ac28be3</originalsourceid><addsrcrecordid>eNo9kEFPwzAMhSMEEhPsD8ClEucOJ07T5jjGGEiVQGOcOEShTadMXTOSFsG_p90GJ9vye8_yR8gVhQmlIG9X09f8ZcKA0QlSzEQKJ2TEkMlYIvDTv55JOCfjEDYAQCGVMuUj8r40tqmcL8zWNG2UG-0b26zjOx1MGd1bXbt1Z6JFZ8t-nn8Novl363XRWtdEreunXe1sG039uttnLE2th2W4JGeVroMZH-sFeXuYr2aPcf68eJpN87hAlG2c0kRmWqcFsrSikFU8SxGEKEvIdAKJ5tXwAGqkUJoi0ZInPKGZYLpg2YfBC3JzyN1599mZ0KqN63zTn1RMMORCcoq9ih1UhXcheFOpnbdb7X8UBTVwVHuOauCojhx70_XBZI0x_wYpBEeB-Av8E234</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623469413</pqid></control><display><type>article</type><title>Reinforcement Learning-Based Dialogue Guided Event Extraction to Exploit Argument Relations</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Qian ; Peng, Hao ; Li, Jianxin ; Wu, Jia ; Ning, Yuanxing ; Wang, Lihong ; Yu, Philip S. ; Wang, Zheng</creator><creatorcontrib>Li, Qian ; Peng, Hao ; Li, Jianxin ; Wu, Jia ; Ning, Yuanxing ; Wang, Lihong ; Yu, Philip S. ; Wang, Zheng</creatorcontrib><description>Event extraction is a ftask for natural language processing. Finding the roles of event arguments like event participants is essential for event extraction. However, doing so for real-life event descriptions is challenging because an argument's role often varies in different contexts. While the relationship and interactions between multiple arguments are useful for settling the argument roles, such information is largely ignored by existing approaches. This paper presents a better approach for event extraction by explicitly utilizing the relationships of event arguments. We achieve this through a carefully designed task-oriented dialogue system. To model the argument relation, we employ reinforcement learning and incremental learning to extract multiple arguments via a multi-turned, iterative process. Our approach leverages knowledge of the already extracted arguments of the same sentence to determine the role of arguments that would be difficult to decide individually. It then uses the newly obtained information to improve the decisions of previously extracted arguments. This two-way feedback process allows us to exploit the argument relations to effectively settle argument roles, leading to better sentence understanding and event extraction. Experimental results show that our approach consistently outperforms seven state-of-the-art event extraction methods for the classification of events and argument role and argument identification.</description><identifier>ISSN: 2329-9290</identifier><identifier>EISSN: 2329-9304</identifier><identifier>DOI: 10.1109/TASLP.2021.3138670</identifier><identifier>CODEN: ITASFA</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Data mining ; Event extraction ; Explosives ; Generators ; incremental learning ; Instruments ; Iterative methods ; Learning ; multi-turned ; Natural language processing ; reinforcement learning ; Roles ; Speech processing ; Task analysis ; Weapons</subject><ispartof>IEEE/ACM transactions on audio, speech, and language processing, 2022, Vol.30, p.520-533</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-71598aa7c327f108f4873066dd08a505a4f23293a310dec5a945451862ac28be3</citedby><cites>FETCH-LOGICAL-c339t-71598aa7c327f108f4873066dd08a505a4f23293a310dec5a945451862ac28be3</cites><orcidid>0000-0002-3491-5968 ; 0000-0001-6157-0662 ; 0000-0001-5152-0055 ; 0000-0002-1371-5801 ; 0000-0001-7422-630X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9664363$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,4012,27910,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9664363$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Qian</creatorcontrib><creatorcontrib>Peng, Hao</creatorcontrib><creatorcontrib>Li, Jianxin</creatorcontrib><creatorcontrib>Wu, Jia</creatorcontrib><creatorcontrib>Ning, Yuanxing</creatorcontrib><creatorcontrib>Wang, Lihong</creatorcontrib><creatorcontrib>Yu, Philip S.</creatorcontrib><creatorcontrib>Wang, Zheng</creatorcontrib><title>Reinforcement Learning-Based Dialogue Guided Event Extraction to Exploit Argument Relations</title><title>IEEE/ACM transactions on audio, speech, and language processing</title><addtitle>TASLP</addtitle><description>Event extraction is a ftask for natural language processing. Finding the roles of event arguments like event participants is essential for event extraction. However, doing so for real-life event descriptions is challenging because an argument's role often varies in different contexts. While the relationship and interactions between multiple arguments are useful for settling the argument roles, such information is largely ignored by existing approaches. This paper presents a better approach for event extraction by explicitly utilizing the relationships of event arguments. We achieve this through a carefully designed task-oriented dialogue system. To model the argument relation, we employ reinforcement learning and incremental learning to extract multiple arguments via a multi-turned, iterative process. Our approach leverages knowledge of the already extracted arguments of the same sentence to determine the role of arguments that would be difficult to decide individually. It then uses the newly obtained information to improve the decisions of previously extracted arguments. This two-way feedback process allows us to exploit the argument relations to effectively settle argument roles, leading to better sentence understanding and event extraction. Experimental results show that our approach consistently outperforms seven state-of-the-art event extraction methods for the classification of events and argument role and argument identification.</description><subject>Data mining</subject><subject>Event extraction</subject><subject>Explosives</subject><subject>Generators</subject><subject>incremental learning</subject><subject>Instruments</subject><subject>Iterative methods</subject><subject>Learning</subject><subject>multi-turned</subject><subject>Natural language processing</subject><subject>reinforcement learning</subject><subject>Roles</subject><subject>Speech processing</subject><subject>Task analysis</subject><subject>Weapons</subject><issn>2329-9290</issn><issn>2329-9304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFPwzAMhSMEEhPsD8ClEucOJ07T5jjGGEiVQGOcOEShTadMXTOSFsG_p90GJ9vye8_yR8gVhQmlIG9X09f8ZcKA0QlSzEQKJ2TEkMlYIvDTv55JOCfjEDYAQCGVMuUj8r40tqmcL8zWNG2UG-0b26zjOx1MGd1bXbt1Z6JFZ8t-nn8Novl363XRWtdEreunXe1sG039uttnLE2th2W4JGeVroMZH-sFeXuYr2aPcf68eJpN87hAlG2c0kRmWqcFsrSikFU8SxGEKEvIdAKJ5tXwAGqkUJoi0ZInPKGZYLpg2YfBC3JzyN1599mZ0KqN63zTn1RMMORCcoq9ih1UhXcheFOpnbdb7X8UBTVwVHuOauCojhx70_XBZI0x_wYpBEeB-Av8E234</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Li, Qian</creator><creator>Peng, Hao</creator><creator>Li, Jianxin</creator><creator>Wu, Jia</creator><creator>Ning, Yuanxing</creator><creator>Wang, Lihong</creator><creator>Yu, Philip S.</creator><creator>Wang, Zheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3491-5968</orcidid><orcidid>https://orcid.org/0000-0001-6157-0662</orcidid><orcidid>https://orcid.org/0000-0001-5152-0055</orcidid><orcidid>https://orcid.org/0000-0002-1371-5801</orcidid><orcidid>https://orcid.org/0000-0001-7422-630X</orcidid></search><sort><creationdate>2022</creationdate><title>Reinforcement Learning-Based Dialogue Guided Event Extraction to Exploit Argument Relations</title><author>Li, Qian ; Peng, Hao ; Li, Jianxin ; Wu, Jia ; Ning, Yuanxing ; Wang, Lihong ; Yu, Philip S. ; Wang, Zheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-71598aa7c327f108f4873066dd08a505a4f23293a310dec5a945451862ac28be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Data mining</topic><topic>Event extraction</topic><topic>Explosives</topic><topic>Generators</topic><topic>incremental learning</topic><topic>Instruments</topic><topic>Iterative methods</topic><topic>Learning</topic><topic>multi-turned</topic><topic>Natural language processing</topic><topic>reinforcement learning</topic><topic>Roles</topic><topic>Speech processing</topic><topic>Task analysis</topic><topic>Weapons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qian</creatorcontrib><creatorcontrib>Peng, Hao</creatorcontrib><creatorcontrib>Li, Jianxin</creatorcontrib><creatorcontrib>Wu, Jia</creatorcontrib><creatorcontrib>Ning, Yuanxing</creatorcontrib><creatorcontrib>Wang, Lihong</creatorcontrib><creatorcontrib>Yu, Philip S.</creatorcontrib><creatorcontrib>Wang, Zheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ACM transactions on audio, speech, and language processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Qian</au><au>Peng, Hao</au><au>Li, Jianxin</au><au>Wu, Jia</au><au>Ning, Yuanxing</au><au>Wang, Lihong</au><au>Yu, Philip S.</au><au>Wang, Zheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reinforcement Learning-Based Dialogue Guided Event Extraction to Exploit Argument Relations</atitle><jtitle>IEEE/ACM transactions on audio, speech, and language processing</jtitle><stitle>TASLP</stitle><date>2022</date><risdate>2022</risdate><volume>30</volume><spage>520</spage><epage>533</epage><pages>520-533</pages><issn>2329-9290</issn><eissn>2329-9304</eissn><coden>ITASFA</coden><abstract>Event extraction is a ftask for natural language processing. Finding the roles of event arguments like event participants is essential for event extraction. However, doing so for real-life event descriptions is challenging because an argument's role often varies in different contexts. While the relationship and interactions between multiple arguments are useful for settling the argument roles, such information is largely ignored by existing approaches. This paper presents a better approach for event extraction by explicitly utilizing the relationships of event arguments. We achieve this through a carefully designed task-oriented dialogue system. To model the argument relation, we employ reinforcement learning and incremental learning to extract multiple arguments via a multi-turned, iterative process. Our approach leverages knowledge of the already extracted arguments of the same sentence to determine the role of arguments that would be difficult to decide individually. It then uses the newly obtained information to improve the decisions of previously extracted arguments. This two-way feedback process allows us to exploit the argument relations to effectively settle argument roles, leading to better sentence understanding and event extraction. Experimental results show that our approach consistently outperforms seven state-of-the-art event extraction methods for the classification of events and argument role and argument identification.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TASLP.2021.3138670</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3491-5968</orcidid><orcidid>https://orcid.org/0000-0001-6157-0662</orcidid><orcidid>https://orcid.org/0000-0001-5152-0055</orcidid><orcidid>https://orcid.org/0000-0002-1371-5801</orcidid><orcidid>https://orcid.org/0000-0001-7422-630X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2329-9290
ispartof IEEE/ACM transactions on audio, speech, and language processing, 2022, Vol.30, p.520-533
issn 2329-9290
2329-9304
language eng
recordid cdi_crossref_primary_10_1109_TASLP_2021_3138670
source IEEE Electronic Library (IEL)
subjects Data mining
Event extraction
Explosives
Generators
incremental learning
Instruments
Iterative methods
Learning
multi-turned
Natural language processing
reinforcement learning
Roles
Speech processing
Task analysis
Weapons
title Reinforcement Learning-Based Dialogue Guided Event Extraction to Exploit Argument Relations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A44%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reinforcement%20Learning-Based%20Dialogue%20Guided%20Event%20Extraction%20to%20Exploit%20Argument%20Relations&rft.jtitle=IEEE/ACM%20transactions%20on%20audio,%20speech,%20and%20language%20processing&rft.au=Li,%20Qian&rft.date=2022&rft.volume=30&rft.spage=520&rft.epage=533&rft.pages=520-533&rft.issn=2329-9290&rft.eissn=2329-9304&rft.coden=ITASFA&rft_id=info:doi/10.1109/TASLP.2021.3138670&rft_dat=%3Cproquest_RIE%3E2623469413%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2623469413&rft_id=info:pmid/&rft_ieee_id=9664363&rfr_iscdi=true