Precise Robotic Picking Up of Polar Body for Biopsy Application
Polar body biopsy has been widely applied in preimplantation genetic diagnosis for assisted reproductive technology. The key step in the polar body biopsy is picking up the polar body from the oocyte/embryo using a micropipette. Unfortunately, the almost transparent appearance of the polar body as w...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automation science and engineering 2024-07, p.1-11 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on automation science and engineering |
container_volume | |
creator | Li, Ruimin Li, Minghui Qiu, Jinyu Li, Ke Liu, Yuzhu Cui, Chaoyu Fu, Shaojie Ma, Biting Zhang, Qiongao Cui, Maosheng Sun, Mingzhu Zhao, Xin Zhao, Qili |
description | Polar body biopsy has been widely applied in preimplantation genetic diagnosis for assisted reproductive technology. The key step in the polar body biopsy is picking up the polar body from the oocyte/embryo using a micropipette. Unfortunately, the almost transparent appearance of the polar body as well as its dynamic drift when the micropipette approaches it inside the cell makes it a challenging task to pick it up with less cytoplasm loss for the cell. The unnecessary cytoplasm loss in the picking up process of the polar body easily causes damage to the development competence of the cell and may lead to disturbances to the biopsy results of the polar body. This paper proposes a precise robotic picking up method of polar bodies with less cytoplasm loss for biopsy purposes. First, a defocus imaging method is proposed to locate the polar body with an almost transparent appearance. Then, the dynamic drift of the polar body with the micropipette moving inside the cell is modeled online based on force analysis to determine an appropriate trajectory for the micropipette to approach the polar body. Further, an Active Disturbance Rejection Controller (ADRC) is designed to move the micropipette along the desired trajectory to approach the polar body and then aspirate it into the micropipette. The experimental results on porcine oocytes demonstrate that our system is capable of localizing the polar body with a success rate of 95 \% and an average error of 1.12 \pm 0.14 \mu m. Moving along the determined trajectory, the micropipette is capable of approaching the edge of the polar body with an average error of 1.84 \pm 0.31 \mu m (n = 20), which is only 11 \% of the results obtained without dynamic drift estimation of the polar body. With this advantage, our system picks up the polar body with a close 60 \% improvement in success rate (95 \% |
doi_str_mv | 10.1109/TASE.2024.3432572 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TASE_2024_3432572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10616048</ieee_id><sourcerecordid>10_1109_TASE_2024_3432572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-82fb36c267527c2fc05da0ccc14959e0199967cfc9d09e5a986cf6615f9f796f3</originalsourceid><addsrcrecordid>eNpNkMtKw0AYhQdRsFYfQHAxL5A4l8xk_pXE0qpQMGi7DumfGRmNnZDJJm9vQrtwdQ6cy-Ij5J6zlHMGj7vic50KJrJUZlKoXFyQBVfKJDI38nL2mUoUKHVNbmL8ZlPTAFuQp7K36KOlH-EQBo-09Pjjj19039HgaBnauqfPoRmpC5PxoYsjLbqu9VgPPhxvyZWr22jvzrok-816t3pNtu8vb6timyDPzJAY4Q5So9C5EjkKh0w1NUOcUlBgGQcAnaNDaBhYVYPR6LTmyoHLQTu5JPz0i32Isbeu6nr_W_djxVk1E6hmAtVMoDoTmDYPp4231v7ra65ZZuQfoMVW1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Precise Robotic Picking Up of Polar Body for Biopsy Application</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Ruimin ; Li, Minghui ; Qiu, Jinyu ; Li, Ke ; Liu, Yuzhu ; Cui, Chaoyu ; Fu, Shaojie ; Ma, Biting ; Zhang, Qiongao ; Cui, Maosheng ; Sun, Mingzhu ; Zhao, Xin ; Zhao, Qili</creator><creatorcontrib>Li, Ruimin ; Li, Minghui ; Qiu, Jinyu ; Li, Ke ; Liu, Yuzhu ; Cui, Chaoyu ; Fu, Shaojie ; Ma, Biting ; Zhang, Qiongao ; Cui, Maosheng ; Sun, Mingzhu ; Zhao, Xin ; Zhao, Qili</creatorcontrib><description><![CDATA[Polar body biopsy has been widely applied in preimplantation genetic diagnosis for assisted reproductive technology. The key step in the polar body biopsy is picking up the polar body from the oocyte/embryo using a micropipette. Unfortunately, the almost transparent appearance of the polar body as well as its dynamic drift when the micropipette approaches it inside the cell makes it a challenging task to pick it up with less cytoplasm loss for the cell. The unnecessary cytoplasm loss in the picking up process of the polar body easily causes damage to the development competence of the cell and may lead to disturbances to the biopsy results of the polar body. This paper proposes a precise robotic picking up method of polar bodies with less cytoplasm loss for biopsy purposes. First, a defocus imaging method is proposed to locate the polar body with an almost transparent appearance. Then, the dynamic drift of the polar body with the micropipette moving inside the cell is modeled online based on force analysis to determine an appropriate trajectory for the micropipette to approach the polar body. Further, an Active Disturbance Rejection Controller (ADRC) is designed to move the micropipette along the desired trajectory to approach the polar body and then aspirate it into the micropipette. The experimental results on porcine oocytes demonstrate that our system is capable of localizing the polar body with a success rate of 95<inline-formula> <tex-math notation="LaTeX">\%</tex-math> </inline-formula> and an average error of 1.12<inline-formula> <tex-math notation="LaTeX">\pm</tex-math> </inline-formula>0.14 <inline-formula> <tex-math notation="LaTeX">\mu</tex-math> </inline-formula>m. Moving along the determined trajectory, the micropipette is capable of approaching the edge of the polar body with an average error of 1.84<inline-formula> <tex-math notation="LaTeX">\pm</tex-math> </inline-formula>0.31 <inline-formula> <tex-math notation="LaTeX">\mu</tex-math> </inline-formula>m (n <inline-formula> <tex-math notation="LaTeX">=</tex-math> </inline-formula> 20), which is only 11<inline-formula> <tex-math notation="LaTeX">\%</tex-math> </inline-formula> of the results obtained without dynamic drift estimation of the polar body. With this advantage, our system picks up the polar body with a close 60<inline-formula> <tex-math notation="LaTeX">\%</tex-math> </inline-formula> improvement in success rate (95<inline-formula> <tex-math notation="LaTeX">\%</tex-math> </inline-formula> vs 60<inline-formula> <tex-math notation="LaTeX">\%</tex-math> </inline-formula>) and only half of the average cytoplasm loss (5<inline-formula> <tex-math notation="LaTeX">\%</tex-math> </inline-formula> vs 10<inline-formula> <tex-math notation="LaTeX">\%</tex-math> </inline-formula>) in comparison to operation results without dynamic drift estimation. Note to Practitioners -Picking up of polar body from the oocyte/embryo using a micropipette is a vital operation in the polar body biopsy. Precisely picking up the polar body with less cytoplasm is vital to maintaining the developmental competence of the embryo/oocyte and reducing disturbances to biopsy result. This article presented a precise robotic picking up process of polar body. This process introduced defocus imaging method for polar body localization, dynamic drift estimation of polar body, and micropipette trajectory design and motion control by Active Disturbance Rejection Controller (ADRC). Experimental results have demonstrated the efficiency of the proposed robotic picking up process. Application of this process may provide an economical and practical method to carry polar body biopsy for practitioners.]]></description><identifier>ISSN: 1545-5955</identifier><identifier>EISSN: 1558-3783</identifier><identifier>DOI: 10.1109/TASE.2024.3432572</identifier><identifier>CODEN: ITASC7</identifier><language>eng</language><publisher>IEEE</publisher><subject>ADRC motion control ; Biopsy ; defocus imaging ; dynamic drift modeling ; Dynamics ; Estimation ; Genetics ; Intracellular manipulation ; Microscopy ; polar body biopsy ; robotic cell manipulation ; Robots ; Trajectory</subject><ispartof>IEEE transactions on automation science and engineering, 2024-07, p.1-11</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8501-8570 ; 0009-0003-0569-1779 ; 0000-0002-9179-9668 ; 0000-0003-1266-5045 ; 0000-0003-1610-2864 ; 0009-0001-9604-3990 ; 0000-0002-4614-7353 ; 0000-0003-0631-4628 ; 0000-0001-8480-744X ; 0009-0000-2602-8042 ; 0000-0002-9517-7460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10616048$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10616048$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Ruimin</creatorcontrib><creatorcontrib>Li, Minghui</creatorcontrib><creatorcontrib>Qiu, Jinyu</creatorcontrib><creatorcontrib>Li, Ke</creatorcontrib><creatorcontrib>Liu, Yuzhu</creatorcontrib><creatorcontrib>Cui, Chaoyu</creatorcontrib><creatorcontrib>Fu, Shaojie</creatorcontrib><creatorcontrib>Ma, Biting</creatorcontrib><creatorcontrib>Zhang, Qiongao</creatorcontrib><creatorcontrib>Cui, Maosheng</creatorcontrib><creatorcontrib>Sun, Mingzhu</creatorcontrib><creatorcontrib>Zhao, Xin</creatorcontrib><creatorcontrib>Zhao, Qili</creatorcontrib><title>Precise Robotic Picking Up of Polar Body for Biopsy Application</title><title>IEEE transactions on automation science and engineering</title><addtitle>TASE</addtitle><description><![CDATA[Polar body biopsy has been widely applied in preimplantation genetic diagnosis for assisted reproductive technology. The key step in the polar body biopsy is picking up the polar body from the oocyte/embryo using a micropipette. Unfortunately, the almost transparent appearance of the polar body as well as its dynamic drift when the micropipette approaches it inside the cell makes it a challenging task to pick it up with less cytoplasm loss for the cell. The unnecessary cytoplasm loss in the picking up process of the polar body easily causes damage to the development competence of the cell and may lead to disturbances to the biopsy results of the polar body. This paper proposes a precise robotic picking up method of polar bodies with less cytoplasm loss for biopsy purposes. First, a defocus imaging method is proposed to locate the polar body with an almost transparent appearance. Then, the dynamic drift of the polar body with the micropipette moving inside the cell is modeled online based on force analysis to determine an appropriate trajectory for the micropipette to approach the polar body. Further, an Active Disturbance Rejection Controller (ADRC) is designed to move the micropipette along the desired trajectory to approach the polar body and then aspirate it into the micropipette. The experimental results on porcine oocytes demonstrate that our system is capable of localizing the polar body with a success rate of 95<inline-formula> <tex-math notation="LaTeX">\%</tex-math> </inline-formula> and an average error of 1.12<inline-formula> <tex-math notation="LaTeX">\pm</tex-math> </inline-formula>0.14 <inline-formula> <tex-math notation="LaTeX">\mu</tex-math> </inline-formula>m. Moving along the determined trajectory, the micropipette is capable of approaching the edge of the polar body with an average error of 1.84<inline-formula> <tex-math notation="LaTeX">\pm</tex-math> </inline-formula>0.31 <inline-formula> <tex-math notation="LaTeX">\mu</tex-math> </inline-formula>m (n <inline-formula> <tex-math notation="LaTeX">=</tex-math> </inline-formula> 20), which is only 11<inline-formula> <tex-math notation="LaTeX">\%</tex-math> </inline-formula> of the results obtained without dynamic drift estimation of the polar body. With this advantage, our system picks up the polar body with a close 60<inline-formula> <tex-math notation="LaTeX">\%</tex-math> </inline-formula> improvement in success rate (95<inline-formula> <tex-math notation="LaTeX">\%</tex-math> </inline-formula> vs 60<inline-formula> <tex-math notation="LaTeX">\%</tex-math> </inline-formula>) and only half of the average cytoplasm loss (5<inline-formula> <tex-math notation="LaTeX">\%</tex-math> </inline-formula> vs 10<inline-formula> <tex-math notation="LaTeX">\%</tex-math> </inline-formula>) in comparison to operation results without dynamic drift estimation. Note to Practitioners -Picking up of polar body from the oocyte/embryo using a micropipette is a vital operation in the polar body biopsy. Precisely picking up the polar body with less cytoplasm is vital to maintaining the developmental competence of the embryo/oocyte and reducing disturbances to biopsy result. This article presented a precise robotic picking up process of polar body. This process introduced defocus imaging method for polar body localization, dynamic drift estimation of polar body, and micropipette trajectory design and motion control by Active Disturbance Rejection Controller (ADRC). Experimental results have demonstrated the efficiency of the proposed robotic picking up process. Application of this process may provide an economical and practical method to carry polar body biopsy for practitioners.]]></description><subject>ADRC motion control</subject><subject>Biopsy</subject><subject>defocus imaging</subject><subject>dynamic drift modeling</subject><subject>Dynamics</subject><subject>Estimation</subject><subject>Genetics</subject><subject>Intracellular manipulation</subject><subject>Microscopy</subject><subject>polar body biopsy</subject><subject>robotic cell manipulation</subject><subject>Robots</subject><subject>Trajectory</subject><issn>1545-5955</issn><issn>1558-3783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtKw0AYhQdRsFYfQHAxL5A4l8xk_pXE0qpQMGi7DumfGRmNnZDJJm9vQrtwdQ6cy-Ij5J6zlHMGj7vic50KJrJUZlKoXFyQBVfKJDI38nL2mUoUKHVNbmL8ZlPTAFuQp7K36KOlH-EQBo-09Pjjj19039HgaBnauqfPoRmpC5PxoYsjLbqu9VgPPhxvyZWr22jvzrok-816t3pNtu8vb6timyDPzJAY4Q5So9C5EjkKh0w1NUOcUlBgGQcAnaNDaBhYVYPR6LTmyoHLQTu5JPz0i32Isbeu6nr_W_djxVk1E6hmAtVMoDoTmDYPp4231v7ra65ZZuQfoMVW1g</recordid><startdate>20240730</startdate><enddate>20240730</enddate><creator>Li, Ruimin</creator><creator>Li, Minghui</creator><creator>Qiu, Jinyu</creator><creator>Li, Ke</creator><creator>Liu, Yuzhu</creator><creator>Cui, Chaoyu</creator><creator>Fu, Shaojie</creator><creator>Ma, Biting</creator><creator>Zhang, Qiongao</creator><creator>Cui, Maosheng</creator><creator>Sun, Mingzhu</creator><creator>Zhao, Xin</creator><creator>Zhao, Qili</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8501-8570</orcidid><orcidid>https://orcid.org/0009-0003-0569-1779</orcidid><orcidid>https://orcid.org/0000-0002-9179-9668</orcidid><orcidid>https://orcid.org/0000-0003-1266-5045</orcidid><orcidid>https://orcid.org/0000-0003-1610-2864</orcidid><orcidid>https://orcid.org/0009-0001-9604-3990</orcidid><orcidid>https://orcid.org/0000-0002-4614-7353</orcidid><orcidid>https://orcid.org/0000-0003-0631-4628</orcidid><orcidid>https://orcid.org/0000-0001-8480-744X</orcidid><orcidid>https://orcid.org/0009-0000-2602-8042</orcidid><orcidid>https://orcid.org/0000-0002-9517-7460</orcidid></search><sort><creationdate>20240730</creationdate><title>Precise Robotic Picking Up of Polar Body for Biopsy Application</title><author>Li, Ruimin ; Li, Minghui ; Qiu, Jinyu ; Li, Ke ; Liu, Yuzhu ; Cui, Chaoyu ; Fu, Shaojie ; Ma, Biting ; Zhang, Qiongao ; Cui, Maosheng ; Sun, Mingzhu ; Zhao, Xin ; Zhao, Qili</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-82fb36c267527c2fc05da0ccc14959e0199967cfc9d09e5a986cf6615f9f796f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ADRC motion control</topic><topic>Biopsy</topic><topic>defocus imaging</topic><topic>dynamic drift modeling</topic><topic>Dynamics</topic><topic>Estimation</topic><topic>Genetics</topic><topic>Intracellular manipulation</topic><topic>Microscopy</topic><topic>polar body biopsy</topic><topic>robotic cell manipulation</topic><topic>Robots</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Ruimin</creatorcontrib><creatorcontrib>Li, Minghui</creatorcontrib><creatorcontrib>Qiu, Jinyu</creatorcontrib><creatorcontrib>Li, Ke</creatorcontrib><creatorcontrib>Liu, Yuzhu</creatorcontrib><creatorcontrib>Cui, Chaoyu</creatorcontrib><creatorcontrib>Fu, Shaojie</creatorcontrib><creatorcontrib>Ma, Biting</creatorcontrib><creatorcontrib>Zhang, Qiongao</creatorcontrib><creatorcontrib>Cui, Maosheng</creatorcontrib><creatorcontrib>Sun, Mingzhu</creatorcontrib><creatorcontrib>Zhao, Xin</creatorcontrib><creatorcontrib>Zhao, Qili</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on automation science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Ruimin</au><au>Li, Minghui</au><au>Qiu, Jinyu</au><au>Li, Ke</au><au>Liu, Yuzhu</au><au>Cui, Chaoyu</au><au>Fu, Shaojie</au><au>Ma, Biting</au><au>Zhang, Qiongao</au><au>Cui, Maosheng</au><au>Sun, Mingzhu</au><au>Zhao, Xin</au><au>Zhao, Qili</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precise Robotic Picking Up of Polar Body for Biopsy Application</atitle><jtitle>IEEE transactions on automation science and engineering</jtitle><stitle>TASE</stitle><date>2024-07-30</date><risdate>2024</risdate><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1545-5955</issn><eissn>1558-3783</eissn><coden>ITASC7</coden><abstract><![CDATA[Polar body biopsy has been widely applied in preimplantation genetic diagnosis for assisted reproductive technology. The key step in the polar body biopsy is picking up the polar body from the oocyte/embryo using a micropipette. Unfortunately, the almost transparent appearance of the polar body as well as its dynamic drift when the micropipette approaches it inside the cell makes it a challenging task to pick it up with less cytoplasm loss for the cell. The unnecessary cytoplasm loss in the picking up process of the polar body easily causes damage to the development competence of the cell and may lead to disturbances to the biopsy results of the polar body. This paper proposes a precise robotic picking up method of polar bodies with less cytoplasm loss for biopsy purposes. First, a defocus imaging method is proposed to locate the polar body with an almost transparent appearance. Then, the dynamic drift of the polar body with the micropipette moving inside the cell is modeled online based on force analysis to determine an appropriate trajectory for the micropipette to approach the polar body. Further, an Active Disturbance Rejection Controller (ADRC) is designed to move the micropipette along the desired trajectory to approach the polar body and then aspirate it into the micropipette. The experimental results on porcine oocytes demonstrate that our system is capable of localizing the polar body with a success rate of 95<inline-formula> <tex-math notation="LaTeX">\%</tex-math> </inline-formula> and an average error of 1.12<inline-formula> <tex-math notation="LaTeX">\pm</tex-math> </inline-formula>0.14 <inline-formula> <tex-math notation="LaTeX">\mu</tex-math> </inline-formula>m. Moving along the determined trajectory, the micropipette is capable of approaching the edge of the polar body with an average error of 1.84<inline-formula> <tex-math notation="LaTeX">\pm</tex-math> </inline-formula>0.31 <inline-formula> <tex-math notation="LaTeX">\mu</tex-math> </inline-formula>m (n <inline-formula> <tex-math notation="LaTeX">=</tex-math> </inline-formula> 20), which is only 11<inline-formula> <tex-math notation="LaTeX">\%</tex-math> </inline-formula> of the results obtained without dynamic drift estimation of the polar body. With this advantage, our system picks up the polar body with a close 60<inline-formula> <tex-math notation="LaTeX">\%</tex-math> </inline-formula> improvement in success rate (95<inline-formula> <tex-math notation="LaTeX">\%</tex-math> </inline-formula> vs 60<inline-formula> <tex-math notation="LaTeX">\%</tex-math> </inline-formula>) and only half of the average cytoplasm loss (5<inline-formula> <tex-math notation="LaTeX">\%</tex-math> </inline-formula> vs 10<inline-formula> <tex-math notation="LaTeX">\%</tex-math> </inline-formula>) in comparison to operation results without dynamic drift estimation. Note to Practitioners -Picking up of polar body from the oocyte/embryo using a micropipette is a vital operation in the polar body biopsy. Precisely picking up the polar body with less cytoplasm is vital to maintaining the developmental competence of the embryo/oocyte and reducing disturbances to biopsy result. This article presented a precise robotic picking up process of polar body. This process introduced defocus imaging method for polar body localization, dynamic drift estimation of polar body, and micropipette trajectory design and motion control by Active Disturbance Rejection Controller (ADRC). Experimental results have demonstrated the efficiency of the proposed robotic picking up process. Application of this process may provide an economical and practical method to carry polar body biopsy for practitioners.]]></abstract><pub>IEEE</pub><doi>10.1109/TASE.2024.3432572</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8501-8570</orcidid><orcidid>https://orcid.org/0009-0003-0569-1779</orcidid><orcidid>https://orcid.org/0000-0002-9179-9668</orcidid><orcidid>https://orcid.org/0000-0003-1266-5045</orcidid><orcidid>https://orcid.org/0000-0003-1610-2864</orcidid><orcidid>https://orcid.org/0009-0001-9604-3990</orcidid><orcidid>https://orcid.org/0000-0002-4614-7353</orcidid><orcidid>https://orcid.org/0000-0003-0631-4628</orcidid><orcidid>https://orcid.org/0000-0001-8480-744X</orcidid><orcidid>https://orcid.org/0009-0000-2602-8042</orcidid><orcidid>https://orcid.org/0000-0002-9517-7460</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-5955 |
ispartof | IEEE transactions on automation science and engineering, 2024-07, p.1-11 |
issn | 1545-5955 1558-3783 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TASE_2024_3432572 |
source | IEEE Electronic Library (IEL) |
subjects | ADRC motion control Biopsy defocus imaging dynamic drift modeling Dynamics Estimation Genetics Intracellular manipulation Microscopy polar body biopsy robotic cell manipulation Robots Trajectory |
title | Precise Robotic Picking Up of Polar Body for Biopsy Application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A27%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precise%20Robotic%20Picking%20Up%20of%20Polar%20Body%20for%20Biopsy%20Application&rft.jtitle=IEEE%20transactions%20on%20automation%20science%20and%20engineering&rft.au=Li,%20Ruimin&rft.date=2024-07-30&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1545-5955&rft.eissn=1558-3783&rft.coden=ITASC7&rft_id=info:doi/10.1109/TASE.2024.3432572&rft_dat=%3Ccrossref_RIE%3E10_1109_TASE_2024_3432572%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10616048&rfr_iscdi=true |