Mobile-DeepRFB: A Lightweight Terrain Classifier for Automatic Mars Rover Navigation

It requires terrain classification for unmanned Mars Rover to identify the safe areas. The current deep learning-based semantic segmentation and object recognition suffer from a large number of parameters and long training time. In this paper, a lightweight segmentation framework called Mobile-DeepR...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automation science and engineering 2023-12, p.1-10
Hauptverfasser: Feng, Lihang, Wang, Sui, Wang, Dong, Xiong, Pengwen, Xie, Jinjin, Hu, Yong, Zhang, Miaomiao, Wu, Edmond Q., Song, Aiguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1
container_title IEEE transactions on automation science and engineering
container_volume
creator Feng, Lihang
Wang, Sui
Wang, Dong
Xiong, Pengwen
Xie, Jinjin
Hu, Yong
Zhang, Miaomiao
Wu, Edmond Q.
Song, Aiguo
description It requires terrain classification for unmanned Mars Rover to identify the safe areas. The current deep learning-based semantic segmentation and object recognition suffer from a large number of parameters and long training time. In this paper, a lightweight segmentation framework called Mobile-DeepRFB is proposed for the Martian terrain classification. It improves from the DeepLabV3 + by taking the MobileNetV3 as the backbone module to decrease the parameters and the Receptive Field Block (RFB) module to strengthen the feature extraction capability as well as to enlarge the receptive field. Experimental results on the NASA Mars terrain dataset AI4MARS show that the presented method reduces 94% about the parameter number and improves the mean pixel accuracy by 2% compared to the existing ResNet101 and Xception backbone networks. The deployment of this framework on a low-computing power embedded platform (NVIDIA Jetson Xavier) demonstrates its great potential to apply to Mars rovers. Note to Practitioners -This paper was motivated by the problem of terrain classification of planetary rovers. Existing methods are typically based on semantic segmentation technology to recognize various terrains while suffering from the drawback of a large number of parameters. We propose a lightweight segmentation framework to address this issue. In particular, the lightweight backbone network is applied to significantly reduce the number of parameters. The receptive field module is substantially improved to enhance the feature extraction capability. Eventually, we deploy the framework on a low-computing platform. Experimental tests show that the framework can significantly reduce the number of network parameters and it can be used for planetary rovers with limited computational resources.
doi_str_mv 10.1109/TASE.2023.3340190
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TASE_2023_3340190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10359499</ieee_id><sourcerecordid>10_1109_TASE_2023_3340190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-3b3238989950c607200f25a3b44e337e74aece820cf9e965e11768ae17639f013</originalsourceid><addsrcrecordid>eNpNkMFOwzAQRC0EEqXwAUgc_AMpa6-dxNxCaQGpBamEc-RG62LUNpUdWvH3JGoPXGZWuztzeIzdChgJAea-LD4mIwkSR4gKhIEzNhBa5wlmOZ73s9KJNlpfsqsYvwGkyg0MWDlvln5NyRPRbjF9fOAFn_nVV3ugXnlJIVi_5eO1jdE7T4G7JvDip202tvU1n9sQ-aLZd4c3u_erbtlsr9mFs-tINycfss_ppBy_JLP359dxMUtqmaZtgkuUmJvcGA11CpkEcFJbXCpFiBllylJNuYTaGTKpJiGyNLfUKRoHAodMHHvr0MQYyFW74Dc2_FYCqh5L1WOpeizVCUuXuTtmPBH9-0dtlDH4B9HDXXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mobile-DeepRFB: A Lightweight Terrain Classifier for Automatic Mars Rover Navigation</title><source>IEEE Electronic Library (IEL)</source><creator>Feng, Lihang ; Wang, Sui ; Wang, Dong ; Xiong, Pengwen ; Xie, Jinjin ; Hu, Yong ; Zhang, Miaomiao ; Wu, Edmond Q. ; Song, Aiguo</creator><creatorcontrib>Feng, Lihang ; Wang, Sui ; Wang, Dong ; Xiong, Pengwen ; Xie, Jinjin ; Hu, Yong ; Zhang, Miaomiao ; Wu, Edmond Q. ; Song, Aiguo</creatorcontrib><description>It requires terrain classification for unmanned Mars Rover to identify the safe areas. The current deep learning-based semantic segmentation and object recognition suffer from a large number of parameters and long training time. In this paper, a lightweight segmentation framework called Mobile-DeepRFB is proposed for the Martian terrain classification. It improves from the DeepLabV3&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;+&lt;/tex-math&gt; &lt;/inline-formula&gt; by taking the MobileNetV3 as the backbone module to decrease the parameters and the Receptive Field Block (RFB) module to strengthen the feature extraction capability as well as to enlarge the receptive field. Experimental results on the NASA Mars terrain dataset AI4MARS show that the presented method reduces 94% about the parameter number and improves the mean pixel accuracy by 2% compared to the existing ResNet101 and Xception backbone networks. The deployment of this framework on a low-computing power embedded platform (NVIDIA Jetson Xavier) demonstrates its great potential to apply to Mars rovers. Note to Practitioners -This paper was motivated by the problem of terrain classification of planetary rovers. Existing methods are typically based on semantic segmentation technology to recognize various terrains while suffering from the drawback of a large number of parameters. We propose a lightweight segmentation framework to address this issue. In particular, the lightweight backbone network is applied to significantly reduce the number of parameters. The receptive field module is substantially improved to enhance the feature extraction capability. Eventually, we deploy the framework on a low-computing platform. Experimental tests show that the framework can significantly reduce the number of network parameters and it can be used for planetary rovers with limited computational resources.</description><identifier>ISSN: 1545-5955</identifier><identifier>EISSN: 1558-3783</identifier><identifier>DOI: 10.1109/TASE.2023.3340190</identifier><identifier>CODEN: ITASC7</identifier><language>eng</language><publisher>IEEE</publisher><subject>DeepLabV3&lt;inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt; &lt;tex-math notation="LaTeX"&gt; +&lt;/tex-math&gt; &lt;/inline-formula&gt; ; lightweight ; low-computing platform ; Mars rover ; terrain classification</subject><ispartof>IEEE transactions on automation science and engineering, 2023-12, p.1-10</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-3b3238989950c607200f25a3b44e337e74aece820cf9e965e11768ae17639f013</citedby><orcidid>0000-0003-3794-0509 ; 0000-0001-9921-6511 ; 0000-0002-0623-8592 ; 0000-0003-2673-4291 ; 0000-0002-4908-1361 ; 0000-0003-1301-9870 ; 0000-0002-5790-0478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10359499$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10359499$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Feng, Lihang</creatorcontrib><creatorcontrib>Wang, Sui</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Xiong, Pengwen</creatorcontrib><creatorcontrib>Xie, Jinjin</creatorcontrib><creatorcontrib>Hu, Yong</creatorcontrib><creatorcontrib>Zhang, Miaomiao</creatorcontrib><creatorcontrib>Wu, Edmond Q.</creatorcontrib><creatorcontrib>Song, Aiguo</creatorcontrib><title>Mobile-DeepRFB: A Lightweight Terrain Classifier for Automatic Mars Rover Navigation</title><title>IEEE transactions on automation science and engineering</title><addtitle>TASE</addtitle><description>It requires terrain classification for unmanned Mars Rover to identify the safe areas. The current deep learning-based semantic segmentation and object recognition suffer from a large number of parameters and long training time. In this paper, a lightweight segmentation framework called Mobile-DeepRFB is proposed for the Martian terrain classification. It improves from the DeepLabV3&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;+&lt;/tex-math&gt; &lt;/inline-formula&gt; by taking the MobileNetV3 as the backbone module to decrease the parameters and the Receptive Field Block (RFB) module to strengthen the feature extraction capability as well as to enlarge the receptive field. Experimental results on the NASA Mars terrain dataset AI4MARS show that the presented method reduces 94% about the parameter number and improves the mean pixel accuracy by 2% compared to the existing ResNet101 and Xception backbone networks. The deployment of this framework on a low-computing power embedded platform (NVIDIA Jetson Xavier) demonstrates its great potential to apply to Mars rovers. Note to Practitioners -This paper was motivated by the problem of terrain classification of planetary rovers. Existing methods are typically based on semantic segmentation technology to recognize various terrains while suffering from the drawback of a large number of parameters. We propose a lightweight segmentation framework to address this issue. In particular, the lightweight backbone network is applied to significantly reduce the number of parameters. The receptive field module is substantially improved to enhance the feature extraction capability. Eventually, we deploy the framework on a low-computing platform. Experimental tests show that the framework can significantly reduce the number of network parameters and it can be used for planetary rovers with limited computational resources.</description><subject>DeepLabV3&lt;inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt; &lt;tex-math notation="LaTeX"&gt; +&lt;/tex-math&gt; &lt;/inline-formula&gt;</subject><subject>lightweight</subject><subject>low-computing platform</subject><subject>Mars rover</subject><subject>terrain classification</subject><issn>1545-5955</issn><issn>1558-3783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFOwzAQRC0EEqXwAUgc_AMpa6-dxNxCaQGpBamEc-RG62LUNpUdWvH3JGoPXGZWuztzeIzdChgJAea-LD4mIwkSR4gKhIEzNhBa5wlmOZ73s9KJNlpfsqsYvwGkyg0MWDlvln5NyRPRbjF9fOAFn_nVV3ugXnlJIVi_5eO1jdE7T4G7JvDip202tvU1n9sQ-aLZd4c3u_erbtlsr9mFs-tINycfss_ppBy_JLP359dxMUtqmaZtgkuUmJvcGA11CpkEcFJbXCpFiBllylJNuYTaGTKpJiGyNLfUKRoHAodMHHvr0MQYyFW74Dc2_FYCqh5L1WOpeizVCUuXuTtmPBH9-0dtlDH4B9HDXXA</recordid><startdate>20231213</startdate><enddate>20231213</enddate><creator>Feng, Lihang</creator><creator>Wang, Sui</creator><creator>Wang, Dong</creator><creator>Xiong, Pengwen</creator><creator>Xie, Jinjin</creator><creator>Hu, Yong</creator><creator>Zhang, Miaomiao</creator><creator>Wu, Edmond Q.</creator><creator>Song, Aiguo</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3794-0509</orcidid><orcidid>https://orcid.org/0000-0001-9921-6511</orcidid><orcidid>https://orcid.org/0000-0002-0623-8592</orcidid><orcidid>https://orcid.org/0000-0003-2673-4291</orcidid><orcidid>https://orcid.org/0000-0002-4908-1361</orcidid><orcidid>https://orcid.org/0000-0003-1301-9870</orcidid><orcidid>https://orcid.org/0000-0002-5790-0478</orcidid></search><sort><creationdate>20231213</creationdate><title>Mobile-DeepRFB: A Lightweight Terrain Classifier for Automatic Mars Rover Navigation</title><author>Feng, Lihang ; Wang, Sui ; Wang, Dong ; Xiong, Pengwen ; Xie, Jinjin ; Hu, Yong ; Zhang, Miaomiao ; Wu, Edmond Q. ; Song, Aiguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-3b3238989950c607200f25a3b44e337e74aece820cf9e965e11768ae17639f013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>DeepLabV3&lt;inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt; &lt;tex-math notation="LaTeX"&gt; +&lt;/tex-math&gt; &lt;/inline-formula&gt;</topic><topic>lightweight</topic><topic>low-computing platform</topic><topic>Mars rover</topic><topic>terrain classification</topic><toplevel>online_resources</toplevel><creatorcontrib>Feng, Lihang</creatorcontrib><creatorcontrib>Wang, Sui</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Xiong, Pengwen</creatorcontrib><creatorcontrib>Xie, Jinjin</creatorcontrib><creatorcontrib>Hu, Yong</creatorcontrib><creatorcontrib>Zhang, Miaomiao</creatorcontrib><creatorcontrib>Wu, Edmond Q.</creatorcontrib><creatorcontrib>Song, Aiguo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on automation science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feng, Lihang</au><au>Wang, Sui</au><au>Wang, Dong</au><au>Xiong, Pengwen</au><au>Xie, Jinjin</au><au>Hu, Yong</au><au>Zhang, Miaomiao</au><au>Wu, Edmond Q.</au><au>Song, Aiguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mobile-DeepRFB: A Lightweight Terrain Classifier for Automatic Mars Rover Navigation</atitle><jtitle>IEEE transactions on automation science and engineering</jtitle><stitle>TASE</stitle><date>2023-12-13</date><risdate>2023</risdate><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1545-5955</issn><eissn>1558-3783</eissn><coden>ITASC7</coden><abstract>It requires terrain classification for unmanned Mars Rover to identify the safe areas. The current deep learning-based semantic segmentation and object recognition suffer from a large number of parameters and long training time. In this paper, a lightweight segmentation framework called Mobile-DeepRFB is proposed for the Martian terrain classification. It improves from the DeepLabV3&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;+&lt;/tex-math&gt; &lt;/inline-formula&gt; by taking the MobileNetV3 as the backbone module to decrease the parameters and the Receptive Field Block (RFB) module to strengthen the feature extraction capability as well as to enlarge the receptive field. Experimental results on the NASA Mars terrain dataset AI4MARS show that the presented method reduces 94% about the parameter number and improves the mean pixel accuracy by 2% compared to the existing ResNet101 and Xception backbone networks. The deployment of this framework on a low-computing power embedded platform (NVIDIA Jetson Xavier) demonstrates its great potential to apply to Mars rovers. Note to Practitioners -This paper was motivated by the problem of terrain classification of planetary rovers. Existing methods are typically based on semantic segmentation technology to recognize various terrains while suffering from the drawback of a large number of parameters. We propose a lightweight segmentation framework to address this issue. In particular, the lightweight backbone network is applied to significantly reduce the number of parameters. The receptive field module is substantially improved to enhance the feature extraction capability. Eventually, we deploy the framework on a low-computing platform. Experimental tests show that the framework can significantly reduce the number of network parameters and it can be used for planetary rovers with limited computational resources.</abstract><pub>IEEE</pub><doi>10.1109/TASE.2023.3340190</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3794-0509</orcidid><orcidid>https://orcid.org/0000-0001-9921-6511</orcidid><orcidid>https://orcid.org/0000-0002-0623-8592</orcidid><orcidid>https://orcid.org/0000-0003-2673-4291</orcidid><orcidid>https://orcid.org/0000-0002-4908-1361</orcidid><orcidid>https://orcid.org/0000-0003-1301-9870</orcidid><orcidid>https://orcid.org/0000-0002-5790-0478</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-5955
ispartof IEEE transactions on automation science and engineering, 2023-12, p.1-10
issn 1545-5955
1558-3783
language eng
recordid cdi_crossref_primary_10_1109_TASE_2023_3340190
source IEEE Electronic Library (IEL)
subjects DeepLabV3<inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> +</tex-math> </inline-formula>
lightweight
low-computing platform
Mars rover
terrain classification
title Mobile-DeepRFB: A Lightweight Terrain Classifier for Automatic Mars Rover Navigation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A12%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mobile-DeepRFB:%20A%20Lightweight%20Terrain%20Classifier%20for%20Automatic%20Mars%20Rover%20Navigation&rft.jtitle=IEEE%20transactions%20on%20automation%20science%20and%20engineering&rft.au=Feng,%20Lihang&rft.date=2023-12-13&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1545-5955&rft.eissn=1558-3783&rft.coden=ITASC7&rft_id=info:doi/10.1109/TASE.2023.3340190&rft_dat=%3Ccrossref_RIE%3E10_1109_TASE_2023_3340190%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10359499&rfr_iscdi=true