Model-Free Adaptive State Feedback Control for a Class of Nonlinear Systems

This paper investigates state feedback control for a class of discrete-time multiple input and multiple output nonlinear systems from the perspective of model-free adaptive control and state observation. The design of a dynamic state feedback control can be efficiently carried out using dynamic line...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automation science and engineering 2024-04, Vol.21 (2), p.1824-1836
Hauptverfasser: Gao, Shouli, Zhao, Dongya, Yan, Xinggang, Spurgeon, Sarah K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1836
container_issue 2
container_start_page 1824
container_title IEEE transactions on automation science and engineering
container_volume 21
creator Gao, Shouli
Zhao, Dongya
Yan, Xinggang
Spurgeon, Sarah K.
description This paper investigates state feedback control for a class of discrete-time multiple input and multiple output nonlinear systems from the perspective of model-free adaptive control and state observation. The design of a dynamic state feedback control can be efficiently carried out using dynamic linearization and state observation. The stability of the proposed method is guaranteed by theoretical analysis. Numerical simulation tests and experimentation on a continuous stirred tank reactor are carried out to validate the effectiveness of the proposed approach. Note to Practitioners-The growth in the scale of factories and the complexity of associated production processes increases the complexity and time involved in associated mathematical modelling. Data driven approaches to control remove the need to model processes. To the best of the authors' knowledge, existing approaches to model-free adaptive control (MFAC) of general systems are all based on an input-output control paradigm. These methods thus cannot guarantee the stability of the system state. The purpose of this study is to develop a novel Model-Free Adaptive Control (MFAC) approach to achieve control of the system state. In this paper, the assumptions required to achieve model-free adaptive control by state feedback are presented mathematically. A controller design and the associated stability proof are then presented. Numerical simulation and experimentation is conducted to validate the effectiveness of the proposed approach. In future research, state feedback data control in the presence of random disturbances will be investigated.
doi_str_mv 10.1109/TASE.2023.3237811
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TASE_2023_3237811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10024828</ieee_id><sourcerecordid>3035282230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-a44ef3f3f9ed45cded50f21cd59e4ae1611a045b020e08a912ea7ea4f4e314cb3</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsFY_gOBhwXPqzv6xybGEVsWqh9bzMk1mITXN1t2t0G9vQj3IHN4MvDcPfozdgpgAiOJhPVvNJ1JINVFSTXOAMzYCY_KsP9T5sGuTmcKYS3YV41YIqfNCjNjrm6-pzRaBiM9q3Kfmh_gqYSK-IKo3WH3x0ncp-JY7HzjyssUYuXf83Xdt0xEGvjrGRLt4zS4ctpFu_nTMPhfzdfmcLT-eXsrZMquUmqYMtSan-imo1qaqqTbCSahqU5BGgkcAFNpshBQkcixAEk4JtdOkQFcbNWb3p7_74L8PFJPd-kPo-kqrhDIyl7LXMYOTqwo-xkDO7kOzw3C0IOzAzA7M7MDM_jHrM3enTENE__wDLZmrX5PxZ34</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035282230</pqid></control><display><type>article</type><title>Model-Free Adaptive State Feedback Control for a Class of Nonlinear Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Gao, Shouli ; Zhao, Dongya ; Yan, Xinggang ; Spurgeon, Sarah K.</creator><creatorcontrib>Gao, Shouli ; Zhao, Dongya ; Yan, Xinggang ; Spurgeon, Sarah K.</creatorcontrib><description>This paper investigates state feedback control for a class of discrete-time multiple input and multiple output nonlinear systems from the perspective of model-free adaptive control and state observation. The design of a dynamic state feedback control can be efficiently carried out using dynamic linearization and state observation. The stability of the proposed method is guaranteed by theoretical analysis. Numerical simulation tests and experimentation on a continuous stirred tank reactor are carried out to validate the effectiveness of the proposed approach. Note to Practitioners-The growth in the scale of factories and the complexity of associated production processes increases the complexity and time involved in associated mathematical modelling. Data driven approaches to control remove the need to model processes. To the best of the authors' knowledge, existing approaches to model-free adaptive control (MFAC) of general systems are all based on an input-output control paradigm. These methods thus cannot guarantee the stability of the system state. The purpose of this study is to develop a novel Model-Free Adaptive Control (MFAC) approach to achieve control of the system state. In this paper, the assumptions required to achieve model-free adaptive control by state feedback are presented mathematically. A controller design and the associated stability proof are then presented. Numerical simulation and experimentation is conducted to validate the effectiveness of the proposed approach. In future research, state feedback data control in the presence of random disturbances will be investigated.</description><identifier>ISSN: 1545-5955</identifier><identifier>EISSN: 1558-3783</identifier><identifier>DOI: 10.1109/TASE.2023.3237811</identifier><identifier>CODEN: ITASC7</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Adaptive control ; Complexity ; Computational modeling ; Continuously stirred tank reactors ; Control systems design ; Data models ; Dynamic stability ; Effectiveness ; Experimentation ; Feedback control ; Mathematical models ; model-free adaptive control ; Nonlinear systems ; Observers ; Process control ; Stability analysis ; State feedback ; State feedback control ; state observer</subject><ispartof>IEEE transactions on automation science and engineering, 2024-04, Vol.21 (2), p.1824-1836</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-a44ef3f3f9ed45cded50f21cd59e4ae1611a045b020e08a912ea7ea4f4e314cb3</citedby><cites>FETCH-LOGICAL-c337t-a44ef3f3f9ed45cded50f21cd59e4ae1611a045b020e08a912ea7ea4f4e314cb3</cites><orcidid>0000-0003-3563-3935 ; 0000-0002-7366-6263 ; 0000-0003-2217-8398 ; 0000-0003-3451-0650</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10024828$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10024828$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gao, Shouli</creatorcontrib><creatorcontrib>Zhao, Dongya</creatorcontrib><creatorcontrib>Yan, Xinggang</creatorcontrib><creatorcontrib>Spurgeon, Sarah K.</creatorcontrib><title>Model-Free Adaptive State Feedback Control for a Class of Nonlinear Systems</title><title>IEEE transactions on automation science and engineering</title><addtitle>TASE</addtitle><description>This paper investigates state feedback control for a class of discrete-time multiple input and multiple output nonlinear systems from the perspective of model-free adaptive control and state observation. The design of a dynamic state feedback control can be efficiently carried out using dynamic linearization and state observation. The stability of the proposed method is guaranteed by theoretical analysis. Numerical simulation tests and experimentation on a continuous stirred tank reactor are carried out to validate the effectiveness of the proposed approach. Note to Practitioners-The growth in the scale of factories and the complexity of associated production processes increases the complexity and time involved in associated mathematical modelling. Data driven approaches to control remove the need to model processes. To the best of the authors' knowledge, existing approaches to model-free adaptive control (MFAC) of general systems are all based on an input-output control paradigm. These methods thus cannot guarantee the stability of the system state. The purpose of this study is to develop a novel Model-Free Adaptive Control (MFAC) approach to achieve control of the system state. In this paper, the assumptions required to achieve model-free adaptive control by state feedback are presented mathematically. A controller design and the associated stability proof are then presented. Numerical simulation and experimentation is conducted to validate the effectiveness of the proposed approach. In future research, state feedback data control in the presence of random disturbances will be investigated.</description><subject>Adaptation models</subject><subject>Adaptive control</subject><subject>Complexity</subject><subject>Computational modeling</subject><subject>Continuously stirred tank reactors</subject><subject>Control systems design</subject><subject>Data models</subject><subject>Dynamic stability</subject><subject>Effectiveness</subject><subject>Experimentation</subject><subject>Feedback control</subject><subject>Mathematical models</subject><subject>model-free adaptive control</subject><subject>Nonlinear systems</subject><subject>Observers</subject><subject>Process control</subject><subject>Stability analysis</subject><subject>State feedback</subject><subject>State feedback control</subject><subject>state observer</subject><issn>1545-5955</issn><issn>1558-3783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9Lw0AQxRdRsFY_gOBhwXPqzv6xybGEVsWqh9bzMk1mITXN1t2t0G9vQj3IHN4MvDcPfozdgpgAiOJhPVvNJ1JINVFSTXOAMzYCY_KsP9T5sGuTmcKYS3YV41YIqfNCjNjrm6-pzRaBiM9q3Kfmh_gqYSK-IKo3WH3x0ncp-JY7HzjyssUYuXf83Xdt0xEGvjrGRLt4zS4ctpFu_nTMPhfzdfmcLT-eXsrZMquUmqYMtSan-imo1qaqqTbCSahqU5BGgkcAFNpshBQkcixAEk4JtdOkQFcbNWb3p7_74L8PFJPd-kPo-kqrhDIyl7LXMYOTqwo-xkDO7kOzw3C0IOzAzA7M7MDM_jHrM3enTENE__wDLZmrX5PxZ34</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Gao, Shouli</creator><creator>Zhao, Dongya</creator><creator>Yan, Xinggang</creator><creator>Spurgeon, Sarah K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3563-3935</orcidid><orcidid>https://orcid.org/0000-0002-7366-6263</orcidid><orcidid>https://orcid.org/0000-0003-2217-8398</orcidid><orcidid>https://orcid.org/0000-0003-3451-0650</orcidid></search><sort><creationdate>20240401</creationdate><title>Model-Free Adaptive State Feedback Control for a Class of Nonlinear Systems</title><author>Gao, Shouli ; Zhao, Dongya ; Yan, Xinggang ; Spurgeon, Sarah K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-a44ef3f3f9ed45cded50f21cd59e4ae1611a045b020e08a912ea7ea4f4e314cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Adaptive control</topic><topic>Complexity</topic><topic>Computational modeling</topic><topic>Continuously stirred tank reactors</topic><topic>Control systems design</topic><topic>Data models</topic><topic>Dynamic stability</topic><topic>Effectiveness</topic><topic>Experimentation</topic><topic>Feedback control</topic><topic>Mathematical models</topic><topic>model-free adaptive control</topic><topic>Nonlinear systems</topic><topic>Observers</topic><topic>Process control</topic><topic>Stability analysis</topic><topic>State feedback</topic><topic>State feedback control</topic><topic>state observer</topic><toplevel>online_resources</toplevel><creatorcontrib>Gao, Shouli</creatorcontrib><creatorcontrib>Zhao, Dongya</creatorcontrib><creatorcontrib>Yan, Xinggang</creatorcontrib><creatorcontrib>Spurgeon, Sarah K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automation science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gao, Shouli</au><au>Zhao, Dongya</au><au>Yan, Xinggang</au><au>Spurgeon, Sarah K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-Free Adaptive State Feedback Control for a Class of Nonlinear Systems</atitle><jtitle>IEEE transactions on automation science and engineering</jtitle><stitle>TASE</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>21</volume><issue>2</issue><spage>1824</spage><epage>1836</epage><pages>1824-1836</pages><issn>1545-5955</issn><eissn>1558-3783</eissn><coden>ITASC7</coden><abstract>This paper investigates state feedback control for a class of discrete-time multiple input and multiple output nonlinear systems from the perspective of model-free adaptive control and state observation. The design of a dynamic state feedback control can be efficiently carried out using dynamic linearization and state observation. The stability of the proposed method is guaranteed by theoretical analysis. Numerical simulation tests and experimentation on a continuous stirred tank reactor are carried out to validate the effectiveness of the proposed approach. Note to Practitioners-The growth in the scale of factories and the complexity of associated production processes increases the complexity and time involved in associated mathematical modelling. Data driven approaches to control remove the need to model processes. To the best of the authors' knowledge, existing approaches to model-free adaptive control (MFAC) of general systems are all based on an input-output control paradigm. These methods thus cannot guarantee the stability of the system state. The purpose of this study is to develop a novel Model-Free Adaptive Control (MFAC) approach to achieve control of the system state. In this paper, the assumptions required to achieve model-free adaptive control by state feedback are presented mathematically. A controller design and the associated stability proof are then presented. Numerical simulation and experimentation is conducted to validate the effectiveness of the proposed approach. In future research, state feedback data control in the presence of random disturbances will be investigated.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASE.2023.3237811</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3563-3935</orcidid><orcidid>https://orcid.org/0000-0002-7366-6263</orcidid><orcidid>https://orcid.org/0000-0003-2217-8398</orcidid><orcidid>https://orcid.org/0000-0003-3451-0650</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-5955
ispartof IEEE transactions on automation science and engineering, 2024-04, Vol.21 (2), p.1824-1836
issn 1545-5955
1558-3783
language eng
recordid cdi_crossref_primary_10_1109_TASE_2023_3237811
source IEEE Electronic Library (IEL)
subjects Adaptation models
Adaptive control
Complexity
Computational modeling
Continuously stirred tank reactors
Control systems design
Data models
Dynamic stability
Effectiveness
Experimentation
Feedback control
Mathematical models
model-free adaptive control
Nonlinear systems
Observers
Process control
Stability analysis
State feedback
State feedback control
state observer
title Model-Free Adaptive State Feedback Control for a Class of Nonlinear Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A09%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-Free%20Adaptive%20State%20Feedback%20Control%20for%20a%20Class%20of%20Nonlinear%20Systems&rft.jtitle=IEEE%20transactions%20on%20automation%20science%20and%20engineering&rft.au=Gao,%20Shouli&rft.date=2024-04-01&rft.volume=21&rft.issue=2&rft.spage=1824&rft.epage=1836&rft.pages=1824-1836&rft.issn=1545-5955&rft.eissn=1558-3783&rft.coden=ITASC7&rft_id=info:doi/10.1109/TASE.2023.3237811&rft_dat=%3Cproquest_RIE%3E3035282230%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3035282230&rft_id=info:pmid/&rft_ieee_id=10024828&rfr_iscdi=true