Model-Free Adaptive State Feedback Control for a Class of Nonlinear Systems
This paper investigates state feedback control for a class of discrete-time multiple input and multiple output nonlinear systems from the perspective of model-free adaptive control and state observation. The design of a dynamic state feedback control can be efficiently carried out using dynamic line...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automation science and engineering 2024-04, Vol.21 (2), p.1824-1836 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1836 |
---|---|
container_issue | 2 |
container_start_page | 1824 |
container_title | IEEE transactions on automation science and engineering |
container_volume | 21 |
creator | Gao, Shouli Zhao, Dongya Yan, Xinggang Spurgeon, Sarah K. |
description | This paper investigates state feedback control for a class of discrete-time multiple input and multiple output nonlinear systems from the perspective of model-free adaptive control and state observation. The design of a dynamic state feedback control can be efficiently carried out using dynamic linearization and state observation. The stability of the proposed method is guaranteed by theoretical analysis. Numerical simulation tests and experimentation on a continuous stirred tank reactor are carried out to validate the effectiveness of the proposed approach. Note to Practitioners-The growth in the scale of factories and the complexity of associated production processes increases the complexity and time involved in associated mathematical modelling. Data driven approaches to control remove the need to model processes. To the best of the authors' knowledge, existing approaches to model-free adaptive control (MFAC) of general systems are all based on an input-output control paradigm. These methods thus cannot guarantee the stability of the system state. The purpose of this study is to develop a novel Model-Free Adaptive Control (MFAC) approach to achieve control of the system state. In this paper, the assumptions required to achieve model-free adaptive control by state feedback are presented mathematically. A controller design and the associated stability proof are then presented. Numerical simulation and experimentation is conducted to validate the effectiveness of the proposed approach. In future research, state feedback data control in the presence of random disturbances will be investigated. |
doi_str_mv | 10.1109/TASE.2023.3237811 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TASE_2023_3237811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10024828</ieee_id><sourcerecordid>3035282230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-a44ef3f3f9ed45cded50f21cd59e4ae1611a045b020e08a912ea7ea4f4e314cb3</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsFY_gOBhwXPqzv6xybGEVsWqh9bzMk1mITXN1t2t0G9vQj3IHN4MvDcPfozdgpgAiOJhPVvNJ1JINVFSTXOAMzYCY_KsP9T5sGuTmcKYS3YV41YIqfNCjNjrm6-pzRaBiM9q3Kfmh_gqYSK-IKo3WH3x0ncp-JY7HzjyssUYuXf83Xdt0xEGvjrGRLt4zS4ctpFu_nTMPhfzdfmcLT-eXsrZMquUmqYMtSan-imo1qaqqTbCSahqU5BGgkcAFNpshBQkcixAEk4JtdOkQFcbNWb3p7_74L8PFJPd-kPo-kqrhDIyl7LXMYOTqwo-xkDO7kOzw3C0IOzAzA7M7MDM_jHrM3enTENE__wDLZmrX5PxZ34</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035282230</pqid></control><display><type>article</type><title>Model-Free Adaptive State Feedback Control for a Class of Nonlinear Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Gao, Shouli ; Zhao, Dongya ; Yan, Xinggang ; Spurgeon, Sarah K.</creator><creatorcontrib>Gao, Shouli ; Zhao, Dongya ; Yan, Xinggang ; Spurgeon, Sarah K.</creatorcontrib><description>This paper investigates state feedback control for a class of discrete-time multiple input and multiple output nonlinear systems from the perspective of model-free adaptive control and state observation. The design of a dynamic state feedback control can be efficiently carried out using dynamic linearization and state observation. The stability of the proposed method is guaranteed by theoretical analysis. Numerical simulation tests and experimentation on a continuous stirred tank reactor are carried out to validate the effectiveness of the proposed approach. Note to Practitioners-The growth in the scale of factories and the complexity of associated production processes increases the complexity and time involved in associated mathematical modelling. Data driven approaches to control remove the need to model processes. To the best of the authors' knowledge, existing approaches to model-free adaptive control (MFAC) of general systems are all based on an input-output control paradigm. These methods thus cannot guarantee the stability of the system state. The purpose of this study is to develop a novel Model-Free Adaptive Control (MFAC) approach to achieve control of the system state. In this paper, the assumptions required to achieve model-free adaptive control by state feedback are presented mathematically. A controller design and the associated stability proof are then presented. Numerical simulation and experimentation is conducted to validate the effectiveness of the proposed approach. In future research, state feedback data control in the presence of random disturbances will be investigated.</description><identifier>ISSN: 1545-5955</identifier><identifier>EISSN: 1558-3783</identifier><identifier>DOI: 10.1109/TASE.2023.3237811</identifier><identifier>CODEN: ITASC7</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Adaptive control ; Complexity ; Computational modeling ; Continuously stirred tank reactors ; Control systems design ; Data models ; Dynamic stability ; Effectiveness ; Experimentation ; Feedback control ; Mathematical models ; model-free adaptive control ; Nonlinear systems ; Observers ; Process control ; Stability analysis ; State feedback ; State feedback control ; state observer</subject><ispartof>IEEE transactions on automation science and engineering, 2024-04, Vol.21 (2), p.1824-1836</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-a44ef3f3f9ed45cded50f21cd59e4ae1611a045b020e08a912ea7ea4f4e314cb3</citedby><cites>FETCH-LOGICAL-c337t-a44ef3f3f9ed45cded50f21cd59e4ae1611a045b020e08a912ea7ea4f4e314cb3</cites><orcidid>0000-0003-3563-3935 ; 0000-0002-7366-6263 ; 0000-0003-2217-8398 ; 0000-0003-3451-0650</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10024828$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10024828$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gao, Shouli</creatorcontrib><creatorcontrib>Zhao, Dongya</creatorcontrib><creatorcontrib>Yan, Xinggang</creatorcontrib><creatorcontrib>Spurgeon, Sarah K.</creatorcontrib><title>Model-Free Adaptive State Feedback Control for a Class of Nonlinear Systems</title><title>IEEE transactions on automation science and engineering</title><addtitle>TASE</addtitle><description>This paper investigates state feedback control for a class of discrete-time multiple input and multiple output nonlinear systems from the perspective of model-free adaptive control and state observation. The design of a dynamic state feedback control can be efficiently carried out using dynamic linearization and state observation. The stability of the proposed method is guaranteed by theoretical analysis. Numerical simulation tests and experimentation on a continuous stirred tank reactor are carried out to validate the effectiveness of the proposed approach. Note to Practitioners-The growth in the scale of factories and the complexity of associated production processes increases the complexity and time involved in associated mathematical modelling. Data driven approaches to control remove the need to model processes. To the best of the authors' knowledge, existing approaches to model-free adaptive control (MFAC) of general systems are all based on an input-output control paradigm. These methods thus cannot guarantee the stability of the system state. The purpose of this study is to develop a novel Model-Free Adaptive Control (MFAC) approach to achieve control of the system state. In this paper, the assumptions required to achieve model-free adaptive control by state feedback are presented mathematically. A controller design and the associated stability proof are then presented. Numerical simulation and experimentation is conducted to validate the effectiveness of the proposed approach. In future research, state feedback data control in the presence of random disturbances will be investigated.</description><subject>Adaptation models</subject><subject>Adaptive control</subject><subject>Complexity</subject><subject>Computational modeling</subject><subject>Continuously stirred tank reactors</subject><subject>Control systems design</subject><subject>Data models</subject><subject>Dynamic stability</subject><subject>Effectiveness</subject><subject>Experimentation</subject><subject>Feedback control</subject><subject>Mathematical models</subject><subject>model-free adaptive control</subject><subject>Nonlinear systems</subject><subject>Observers</subject><subject>Process control</subject><subject>Stability analysis</subject><subject>State feedback</subject><subject>State feedback control</subject><subject>state observer</subject><issn>1545-5955</issn><issn>1558-3783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9Lw0AQxRdRsFY_gOBhwXPqzv6xybGEVsWqh9bzMk1mITXN1t2t0G9vQj3IHN4MvDcPfozdgpgAiOJhPVvNJ1JINVFSTXOAMzYCY_KsP9T5sGuTmcKYS3YV41YIqfNCjNjrm6-pzRaBiM9q3Kfmh_gqYSK-IKo3WH3x0ncp-JY7HzjyssUYuXf83Xdt0xEGvjrGRLt4zS4ctpFu_nTMPhfzdfmcLT-eXsrZMquUmqYMtSan-imo1qaqqTbCSahqU5BGgkcAFNpshBQkcixAEk4JtdOkQFcbNWb3p7_74L8PFJPd-kPo-kqrhDIyl7LXMYOTqwo-xkDO7kOzw3C0IOzAzA7M7MDM_jHrM3enTENE__wDLZmrX5PxZ34</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Gao, Shouli</creator><creator>Zhao, Dongya</creator><creator>Yan, Xinggang</creator><creator>Spurgeon, Sarah K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3563-3935</orcidid><orcidid>https://orcid.org/0000-0002-7366-6263</orcidid><orcidid>https://orcid.org/0000-0003-2217-8398</orcidid><orcidid>https://orcid.org/0000-0003-3451-0650</orcidid></search><sort><creationdate>20240401</creationdate><title>Model-Free Adaptive State Feedback Control for a Class of Nonlinear Systems</title><author>Gao, Shouli ; Zhao, Dongya ; Yan, Xinggang ; Spurgeon, Sarah K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-a44ef3f3f9ed45cded50f21cd59e4ae1611a045b020e08a912ea7ea4f4e314cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Adaptive control</topic><topic>Complexity</topic><topic>Computational modeling</topic><topic>Continuously stirred tank reactors</topic><topic>Control systems design</topic><topic>Data models</topic><topic>Dynamic stability</topic><topic>Effectiveness</topic><topic>Experimentation</topic><topic>Feedback control</topic><topic>Mathematical models</topic><topic>model-free adaptive control</topic><topic>Nonlinear systems</topic><topic>Observers</topic><topic>Process control</topic><topic>Stability analysis</topic><topic>State feedback</topic><topic>State feedback control</topic><topic>state observer</topic><toplevel>online_resources</toplevel><creatorcontrib>Gao, Shouli</creatorcontrib><creatorcontrib>Zhao, Dongya</creatorcontrib><creatorcontrib>Yan, Xinggang</creatorcontrib><creatorcontrib>Spurgeon, Sarah K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automation science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gao, Shouli</au><au>Zhao, Dongya</au><au>Yan, Xinggang</au><au>Spurgeon, Sarah K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-Free Adaptive State Feedback Control for a Class of Nonlinear Systems</atitle><jtitle>IEEE transactions on automation science and engineering</jtitle><stitle>TASE</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>21</volume><issue>2</issue><spage>1824</spage><epage>1836</epage><pages>1824-1836</pages><issn>1545-5955</issn><eissn>1558-3783</eissn><coden>ITASC7</coden><abstract>This paper investigates state feedback control for a class of discrete-time multiple input and multiple output nonlinear systems from the perspective of model-free adaptive control and state observation. The design of a dynamic state feedback control can be efficiently carried out using dynamic linearization and state observation. The stability of the proposed method is guaranteed by theoretical analysis. Numerical simulation tests and experimentation on a continuous stirred tank reactor are carried out to validate the effectiveness of the proposed approach. Note to Practitioners-The growth in the scale of factories and the complexity of associated production processes increases the complexity and time involved in associated mathematical modelling. Data driven approaches to control remove the need to model processes. To the best of the authors' knowledge, existing approaches to model-free adaptive control (MFAC) of general systems are all based on an input-output control paradigm. These methods thus cannot guarantee the stability of the system state. The purpose of this study is to develop a novel Model-Free Adaptive Control (MFAC) approach to achieve control of the system state. In this paper, the assumptions required to achieve model-free adaptive control by state feedback are presented mathematically. A controller design and the associated stability proof are then presented. Numerical simulation and experimentation is conducted to validate the effectiveness of the proposed approach. In future research, state feedback data control in the presence of random disturbances will be investigated.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASE.2023.3237811</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3563-3935</orcidid><orcidid>https://orcid.org/0000-0002-7366-6263</orcidid><orcidid>https://orcid.org/0000-0003-2217-8398</orcidid><orcidid>https://orcid.org/0000-0003-3451-0650</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-5955 |
ispartof | IEEE transactions on automation science and engineering, 2024-04, Vol.21 (2), p.1824-1836 |
issn | 1545-5955 1558-3783 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TASE_2023_3237811 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Adaptive control Complexity Computational modeling Continuously stirred tank reactors Control systems design Data models Dynamic stability Effectiveness Experimentation Feedback control Mathematical models model-free adaptive control Nonlinear systems Observers Process control Stability analysis State feedback State feedback control state observer |
title | Model-Free Adaptive State Feedback Control for a Class of Nonlinear Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A09%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-Free%20Adaptive%20State%20Feedback%20Control%20for%20a%20Class%20of%20Nonlinear%20Systems&rft.jtitle=IEEE%20transactions%20on%20automation%20science%20and%20engineering&rft.au=Gao,%20Shouli&rft.date=2024-04-01&rft.volume=21&rft.issue=2&rft.spage=1824&rft.epage=1836&rft.pages=1824-1836&rft.issn=1545-5955&rft.eissn=1558-3783&rft.coden=ITASC7&rft_id=info:doi/10.1109/TASE.2023.3237811&rft_dat=%3Cproquest_RIE%3E3035282230%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3035282230&rft_id=info:pmid/&rft_ieee_id=10024828&rfr_iscdi=true |