A Novel Decentralized Process Monitoring Scheme Using a Modified Multiblock PCA Algorithm
Decentralized process monitoring based on purely data-based methods has recently gained considerable attention in multivariate statistical process monitoring circle. Although the process variables can be divided into several blocks automatically according to their statistical preferences, most of th...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automation science and engineering 2017-04, Vol.14 (2), p.1129-1138 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1138 |
---|---|
container_issue | 2 |
container_start_page | 1129 |
container_title | IEEE transactions on automation science and engineering |
container_volume | 14 |
creator | Tong, Chudong Yan, Xuefeng |
description | Decentralized process monitoring based on purely data-based methods has recently gained considerable attention in multivariate statistical process monitoring circle. Although the process variables can be divided into several blocks automatically according to their statistical preferences, most of the existing multiblock modeling strategies tends to build local monitoring models individually, where the relevance among different blocks is ignored, and this leaves a room for enhancing process monitoring performance. Inspired by the recognition of this lack, a modified multiblock principal component analysis (MBPCA) algorithm is proposed for extracting block scores with respect to both specificity in each block and relevance among different blocks. Based on this sort of modeling strategy, a novel decentralized process monitoring is formulated by incorporating a PCA-based process decomposition strategy for block division, Bayesian inference to achieve decision fusion of fault detection, and reconstruction-based contribution plots for fault diagnosis. The superiority and validity of the proposed method is finally demonstrated through comparison studies on two simulated examples. |
doi_str_mv | 10.1109/TASE.2015.2493564 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TASE_2015_2493564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7323880</ieee_id><sourcerecordid>10_1109_TASE_2015_2493564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-e53d5fc56556572567fff4f6bcf68223bb26df9bc70de0836914363cf94305a23</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoOKd_gPiSf6AzyeXS9LHM-QM2HWx78Km0abJFu1WSKuhfb8tEOLg77vO9hw8h15xNOGfZ7TpfzSaCcZwImQEqeUJGHFEnkGo4HWaJCWaI5-QixjfGhNQZG5HXnD63X7ahd9bYQxfKxv_Ymi5Da2yMdNEefNcGf9jSldnZvaWbOCxlf6m98z26-Gw6XzWteafLaU7zZtvz3W5_Sc5c2UR79dfHZHM_W08fk_nLw9M0nycGALvEItToDCrsKxWoUuecdKoyTmkhoKqEql1WmZTVlmlQGZegwLhMAsNSwJjw418T2hiDdcVH8PsyfBecFYObYnBTDG6KPzd95uaY8dbafz4FAVoz-AVbVmAD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Novel Decentralized Process Monitoring Scheme Using a Modified Multiblock PCA Algorithm</title><source>IEL</source><creator>Tong, Chudong ; Yan, Xuefeng</creator><creatorcontrib>Tong, Chudong ; Yan, Xuefeng</creatorcontrib><description>Decentralized process monitoring based on purely data-based methods has recently gained considerable attention in multivariate statistical process monitoring circle. Although the process variables can be divided into several blocks automatically according to their statistical preferences, most of the existing multiblock modeling strategies tends to build local monitoring models individually, where the relevance among different blocks is ignored, and this leaves a room for enhancing process monitoring performance. Inspired by the recognition of this lack, a modified multiblock principal component analysis (MBPCA) algorithm is proposed for extracting block scores with respect to both specificity in each block and relevance among different blocks. Based on this sort of modeling strategy, a novel decentralized process monitoring is formulated by incorporating a PCA-based process decomposition strategy for block division, Bayesian inference to achieve decision fusion of fault detection, and reconstruction-based contribution plots for fault diagnosis. The superiority and validity of the proposed method is finally demonstrated through comparison studies on two simulated examples.</description><identifier>ISSN: 1545-5955</identifier><identifier>EISSN: 1558-3783</identifier><identifier>DOI: 10.1109/TASE.2015.2493564</identifier><identifier>CODEN: ITASC7</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayes methods ; Bayesian inference ; contribution plots ; decentralized process monitoring ; Fault detection ; Indexes ; Load modeling ; Loading ; Monitoring ; multiblock principal component analysis (MBPCA) ; Principal component analysis</subject><ispartof>IEEE transactions on automation science and engineering, 2017-04, Vol.14 (2), p.1129-1138</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-e53d5fc56556572567fff4f6bcf68223bb26df9bc70de0836914363cf94305a23</citedby><cites>FETCH-LOGICAL-c335t-e53d5fc56556572567fff4f6bcf68223bb26df9bc70de0836914363cf94305a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7323880$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7323880$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tong, Chudong</creatorcontrib><creatorcontrib>Yan, Xuefeng</creatorcontrib><title>A Novel Decentralized Process Monitoring Scheme Using a Modified Multiblock PCA Algorithm</title><title>IEEE transactions on automation science and engineering</title><addtitle>TASE</addtitle><description>Decentralized process monitoring based on purely data-based methods has recently gained considerable attention in multivariate statistical process monitoring circle. Although the process variables can be divided into several blocks automatically according to their statistical preferences, most of the existing multiblock modeling strategies tends to build local monitoring models individually, where the relevance among different blocks is ignored, and this leaves a room for enhancing process monitoring performance. Inspired by the recognition of this lack, a modified multiblock principal component analysis (MBPCA) algorithm is proposed for extracting block scores with respect to both specificity in each block and relevance among different blocks. Based on this sort of modeling strategy, a novel decentralized process monitoring is formulated by incorporating a PCA-based process decomposition strategy for block division, Bayesian inference to achieve decision fusion of fault detection, and reconstruction-based contribution plots for fault diagnosis. The superiority and validity of the proposed method is finally demonstrated through comparison studies on two simulated examples.</description><subject>Bayes methods</subject><subject>Bayesian inference</subject><subject>contribution plots</subject><subject>decentralized process monitoring</subject><subject>Fault detection</subject><subject>Indexes</subject><subject>Load modeling</subject><subject>Loading</subject><subject>Monitoring</subject><subject>multiblock principal component analysis (MBPCA)</subject><subject>Principal component analysis</subject><issn>1545-5955</issn><issn>1558-3783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN9LwzAQx4MoOKd_gPiSf6AzyeXS9LHM-QM2HWx78Km0abJFu1WSKuhfb8tEOLg77vO9hw8h15xNOGfZ7TpfzSaCcZwImQEqeUJGHFEnkGo4HWaJCWaI5-QixjfGhNQZG5HXnD63X7ahd9bYQxfKxv_Ymi5Da2yMdNEefNcGf9jSldnZvaWbOCxlf6m98z26-Gw6XzWteafLaU7zZtvz3W5_Sc5c2UR79dfHZHM_W08fk_nLw9M0nycGALvEItToDCrsKxWoUuecdKoyTmkhoKqEql1WmZTVlmlQGZegwLhMAsNSwJjw418T2hiDdcVH8PsyfBecFYObYnBTDG6KPzd95uaY8dbafz4FAVoz-AVbVmAD</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Tong, Chudong</creator><creator>Yan, Xuefeng</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170401</creationdate><title>A Novel Decentralized Process Monitoring Scheme Using a Modified Multiblock PCA Algorithm</title><author>Tong, Chudong ; Yan, Xuefeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-e53d5fc56556572567fff4f6bcf68223bb26df9bc70de0836914363cf94305a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bayes methods</topic><topic>Bayesian inference</topic><topic>contribution plots</topic><topic>decentralized process monitoring</topic><topic>Fault detection</topic><topic>Indexes</topic><topic>Load modeling</topic><topic>Loading</topic><topic>Monitoring</topic><topic>multiblock principal component analysis (MBPCA)</topic><topic>Principal component analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Tong, Chudong</creatorcontrib><creatorcontrib>Yan, Xuefeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEL</collection><collection>CrossRef</collection><jtitle>IEEE transactions on automation science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tong, Chudong</au><au>Yan, Xuefeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Decentralized Process Monitoring Scheme Using a Modified Multiblock PCA Algorithm</atitle><jtitle>IEEE transactions on automation science and engineering</jtitle><stitle>TASE</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>14</volume><issue>2</issue><spage>1129</spage><epage>1138</epage><pages>1129-1138</pages><issn>1545-5955</issn><eissn>1558-3783</eissn><coden>ITASC7</coden><abstract>Decentralized process monitoring based on purely data-based methods has recently gained considerable attention in multivariate statistical process monitoring circle. Although the process variables can be divided into several blocks automatically according to their statistical preferences, most of the existing multiblock modeling strategies tends to build local monitoring models individually, where the relevance among different blocks is ignored, and this leaves a room for enhancing process monitoring performance. Inspired by the recognition of this lack, a modified multiblock principal component analysis (MBPCA) algorithm is proposed for extracting block scores with respect to both specificity in each block and relevance among different blocks. Based on this sort of modeling strategy, a novel decentralized process monitoring is formulated by incorporating a PCA-based process decomposition strategy for block division, Bayesian inference to achieve decision fusion of fault detection, and reconstruction-based contribution plots for fault diagnosis. The superiority and validity of the proposed method is finally demonstrated through comparison studies on two simulated examples.</abstract><pub>IEEE</pub><doi>10.1109/TASE.2015.2493564</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-5955 |
ispartof | IEEE transactions on automation science and engineering, 2017-04, Vol.14 (2), p.1129-1138 |
issn | 1545-5955 1558-3783 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TASE_2015_2493564 |
source | IEL |
subjects | Bayes methods Bayesian inference contribution plots decentralized process monitoring Fault detection Indexes Load modeling Loading Monitoring multiblock principal component analysis (MBPCA) Principal component analysis |
title | A Novel Decentralized Process Monitoring Scheme Using a Modified Multiblock PCA Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T15%3A39%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Decentralized%20Process%20Monitoring%20Scheme%20Using%20a%20Modified%20Multiblock%20PCA%20Algorithm&rft.jtitle=IEEE%20transactions%20on%20automation%20science%20and%20engineering&rft.au=Tong,%20Chudong&rft.date=2017-04-01&rft.volume=14&rft.issue=2&rft.spage=1129&rft.epage=1138&rft.pages=1129-1138&rft.issn=1545-5955&rft.eissn=1558-3783&rft.coden=ITASC7&rft_id=info:doi/10.1109/TASE.2015.2493564&rft_dat=%3Ccrossref_RIE%3E10_1109_TASE_2015_2493564%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7323880&rfr_iscdi=true |