A Novel Decentralized Process Monitoring Scheme Using a Modified Multiblock PCA Algorithm

Decentralized process monitoring based on purely data-based methods has recently gained considerable attention in multivariate statistical process monitoring circle. Although the process variables can be divided into several blocks automatically according to their statistical preferences, most of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automation science and engineering 2017-04, Vol.14 (2), p.1129-1138
Hauptverfasser: Tong, Chudong, Yan, Xuefeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1138
container_issue 2
container_start_page 1129
container_title IEEE transactions on automation science and engineering
container_volume 14
creator Tong, Chudong
Yan, Xuefeng
description Decentralized process monitoring based on purely data-based methods has recently gained considerable attention in multivariate statistical process monitoring circle. Although the process variables can be divided into several blocks automatically according to their statistical preferences, most of the existing multiblock modeling strategies tends to build local monitoring models individually, where the relevance among different blocks is ignored, and this leaves a room for enhancing process monitoring performance. Inspired by the recognition of this lack, a modified multiblock principal component analysis (MBPCA) algorithm is proposed for extracting block scores with respect to both specificity in each block and relevance among different blocks. Based on this sort of modeling strategy, a novel decentralized process monitoring is formulated by incorporating a PCA-based process decomposition strategy for block division, Bayesian inference to achieve decision fusion of fault detection, and reconstruction-based contribution plots for fault diagnosis. The superiority and validity of the proposed method is finally demonstrated through comparison studies on two simulated examples.
doi_str_mv 10.1109/TASE.2015.2493564
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TASE_2015_2493564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7323880</ieee_id><sourcerecordid>10_1109_TASE_2015_2493564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-e53d5fc56556572567fff4f6bcf68223bb26df9bc70de0836914363cf94305a23</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoOKd_gPiSf6AzyeXS9LHM-QM2HWx78Km0abJFu1WSKuhfb8tEOLg77vO9hw8h15xNOGfZ7TpfzSaCcZwImQEqeUJGHFEnkGo4HWaJCWaI5-QixjfGhNQZG5HXnD63X7ahd9bYQxfKxv_Ymi5Da2yMdNEefNcGf9jSldnZvaWbOCxlf6m98z26-Gw6XzWteafLaU7zZtvz3W5_Sc5c2UR79dfHZHM_W08fk_nLw9M0nycGALvEItToDCrsKxWoUuecdKoyTmkhoKqEql1WmZTVlmlQGZegwLhMAsNSwJjw418T2hiDdcVH8PsyfBecFYObYnBTDG6KPzd95uaY8dbafz4FAVoz-AVbVmAD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Novel Decentralized Process Monitoring Scheme Using a Modified Multiblock PCA Algorithm</title><source>IEL</source><creator>Tong, Chudong ; Yan, Xuefeng</creator><creatorcontrib>Tong, Chudong ; Yan, Xuefeng</creatorcontrib><description>Decentralized process monitoring based on purely data-based methods has recently gained considerable attention in multivariate statistical process monitoring circle. Although the process variables can be divided into several blocks automatically according to their statistical preferences, most of the existing multiblock modeling strategies tends to build local monitoring models individually, where the relevance among different blocks is ignored, and this leaves a room for enhancing process monitoring performance. Inspired by the recognition of this lack, a modified multiblock principal component analysis (MBPCA) algorithm is proposed for extracting block scores with respect to both specificity in each block and relevance among different blocks. Based on this sort of modeling strategy, a novel decentralized process monitoring is formulated by incorporating a PCA-based process decomposition strategy for block division, Bayesian inference to achieve decision fusion of fault detection, and reconstruction-based contribution plots for fault diagnosis. The superiority and validity of the proposed method is finally demonstrated through comparison studies on two simulated examples.</description><identifier>ISSN: 1545-5955</identifier><identifier>EISSN: 1558-3783</identifier><identifier>DOI: 10.1109/TASE.2015.2493564</identifier><identifier>CODEN: ITASC7</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayes methods ; Bayesian inference ; contribution plots ; decentralized process monitoring ; Fault detection ; Indexes ; Load modeling ; Loading ; Monitoring ; multiblock principal component analysis (MBPCA) ; Principal component analysis</subject><ispartof>IEEE transactions on automation science and engineering, 2017-04, Vol.14 (2), p.1129-1138</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-e53d5fc56556572567fff4f6bcf68223bb26df9bc70de0836914363cf94305a23</citedby><cites>FETCH-LOGICAL-c335t-e53d5fc56556572567fff4f6bcf68223bb26df9bc70de0836914363cf94305a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7323880$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7323880$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tong, Chudong</creatorcontrib><creatorcontrib>Yan, Xuefeng</creatorcontrib><title>A Novel Decentralized Process Monitoring Scheme Using a Modified Multiblock PCA Algorithm</title><title>IEEE transactions on automation science and engineering</title><addtitle>TASE</addtitle><description>Decentralized process monitoring based on purely data-based methods has recently gained considerable attention in multivariate statistical process monitoring circle. Although the process variables can be divided into several blocks automatically according to their statistical preferences, most of the existing multiblock modeling strategies tends to build local monitoring models individually, where the relevance among different blocks is ignored, and this leaves a room for enhancing process monitoring performance. Inspired by the recognition of this lack, a modified multiblock principal component analysis (MBPCA) algorithm is proposed for extracting block scores with respect to both specificity in each block and relevance among different blocks. Based on this sort of modeling strategy, a novel decentralized process monitoring is formulated by incorporating a PCA-based process decomposition strategy for block division, Bayesian inference to achieve decision fusion of fault detection, and reconstruction-based contribution plots for fault diagnosis. The superiority and validity of the proposed method is finally demonstrated through comparison studies on two simulated examples.</description><subject>Bayes methods</subject><subject>Bayesian inference</subject><subject>contribution plots</subject><subject>decentralized process monitoring</subject><subject>Fault detection</subject><subject>Indexes</subject><subject>Load modeling</subject><subject>Loading</subject><subject>Monitoring</subject><subject>multiblock principal component analysis (MBPCA)</subject><subject>Principal component analysis</subject><issn>1545-5955</issn><issn>1558-3783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN9LwzAQx4MoOKd_gPiSf6AzyeXS9LHM-QM2HWx78Km0abJFu1WSKuhfb8tEOLg77vO9hw8h15xNOGfZ7TpfzSaCcZwImQEqeUJGHFEnkGo4HWaJCWaI5-QixjfGhNQZG5HXnD63X7ahd9bYQxfKxv_Ymi5Da2yMdNEefNcGf9jSldnZvaWbOCxlf6m98z26-Gw6XzWteafLaU7zZtvz3W5_Sc5c2UR79dfHZHM_W08fk_nLw9M0nycGALvEItToDCrsKxWoUuecdKoyTmkhoKqEql1WmZTVlmlQGZegwLhMAsNSwJjw418T2hiDdcVH8PsyfBecFYObYnBTDG6KPzd95uaY8dbafz4FAVoz-AVbVmAD</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Tong, Chudong</creator><creator>Yan, Xuefeng</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170401</creationdate><title>A Novel Decentralized Process Monitoring Scheme Using a Modified Multiblock PCA Algorithm</title><author>Tong, Chudong ; Yan, Xuefeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-e53d5fc56556572567fff4f6bcf68223bb26df9bc70de0836914363cf94305a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bayes methods</topic><topic>Bayesian inference</topic><topic>contribution plots</topic><topic>decentralized process monitoring</topic><topic>Fault detection</topic><topic>Indexes</topic><topic>Load modeling</topic><topic>Loading</topic><topic>Monitoring</topic><topic>multiblock principal component analysis (MBPCA)</topic><topic>Principal component analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Tong, Chudong</creatorcontrib><creatorcontrib>Yan, Xuefeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEL</collection><collection>CrossRef</collection><jtitle>IEEE transactions on automation science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tong, Chudong</au><au>Yan, Xuefeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Decentralized Process Monitoring Scheme Using a Modified Multiblock PCA Algorithm</atitle><jtitle>IEEE transactions on automation science and engineering</jtitle><stitle>TASE</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>14</volume><issue>2</issue><spage>1129</spage><epage>1138</epage><pages>1129-1138</pages><issn>1545-5955</issn><eissn>1558-3783</eissn><coden>ITASC7</coden><abstract>Decentralized process monitoring based on purely data-based methods has recently gained considerable attention in multivariate statistical process monitoring circle. Although the process variables can be divided into several blocks automatically according to their statistical preferences, most of the existing multiblock modeling strategies tends to build local monitoring models individually, where the relevance among different blocks is ignored, and this leaves a room for enhancing process monitoring performance. Inspired by the recognition of this lack, a modified multiblock principal component analysis (MBPCA) algorithm is proposed for extracting block scores with respect to both specificity in each block and relevance among different blocks. Based on this sort of modeling strategy, a novel decentralized process monitoring is formulated by incorporating a PCA-based process decomposition strategy for block division, Bayesian inference to achieve decision fusion of fault detection, and reconstruction-based contribution plots for fault diagnosis. The superiority and validity of the proposed method is finally demonstrated through comparison studies on two simulated examples.</abstract><pub>IEEE</pub><doi>10.1109/TASE.2015.2493564</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-5955
ispartof IEEE transactions on automation science and engineering, 2017-04, Vol.14 (2), p.1129-1138
issn 1545-5955
1558-3783
language eng
recordid cdi_crossref_primary_10_1109_TASE_2015_2493564
source IEL
subjects Bayes methods
Bayesian inference
contribution plots
decentralized process monitoring
Fault detection
Indexes
Load modeling
Loading
Monitoring
multiblock principal component analysis (MBPCA)
Principal component analysis
title A Novel Decentralized Process Monitoring Scheme Using a Modified Multiblock PCA Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T15%3A39%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Decentralized%20Process%20Monitoring%20Scheme%20Using%20a%20Modified%20Multiblock%20PCA%20Algorithm&rft.jtitle=IEEE%20transactions%20on%20automation%20science%20and%20engineering&rft.au=Tong,%20Chudong&rft.date=2017-04-01&rft.volume=14&rft.issue=2&rft.spage=1129&rft.epage=1138&rft.pages=1129-1138&rft.issn=1545-5955&rft.eissn=1558-3783&rft.coden=ITASC7&rft_id=info:doi/10.1109/TASE.2015.2493564&rft_dat=%3Ccrossref_RIE%3E10_1109_TASE_2015_2493564%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7323880&rfr_iscdi=true