Causality Assignment and Model Approximation for Hybrid Bond Graph: Fault Diagnosis Perspectives

Bond graph (BG) is an effective tool for modeling complex systems and it has been proven useful for fault detection and isolation (FDI) for continuous systems. BG provides the causal relations between system's variables which allow FDI algorithms to be developed systematically from the graph. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automation science and engineering 2010-07, Vol.7 (3), p.570-580
Hauptverfasser: Chang Boon Low, Danwei Wang, Arogeti, Shai, Jing Bing Zhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 580
container_issue 3
container_start_page 570
container_title IEEE transactions on automation science and engineering
container_volume 7
creator Chang Boon Low
Danwei Wang
Arogeti, Shai
Jing Bing Zhang
description Bond graph (BG) is an effective tool for modeling complex systems and it has been proven useful for fault detection and isolation (FDI) for continuous systems. BG provides the causal relations between system's variables which allow FDI algorithms to be developed systematically from the graph. In the same spirit, Hybrid bond graph (HBG) is a BG-based modeling approach which provides an avenue to model complex hybrid systems. However, due to mode-varying causality properties of HBG, HBG has not been efficiently-exploited for fault diagnosis. In this work, a comprehensive study on the HBG from FDI viewpoints is presented. Some properties pertaining to the HBG are gained in the study. Based on these findings, a causality assignment procedure and a model approximation technique are developed to achieve a HBG with a desirable causality assignment that leads a unified description of system's behavior. These results lay a foundation for quantitative FDI design for complex hybrid systems.
doi_str_mv 10.1109/TASE.2009.2026731
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TASE_2009_2026731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5262981</ieee_id><sourcerecordid>2079012561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-9dbfbb7ddb6b32f179a115b1c524395661299124ea2a9c2042ee7736fa4ffc2d3</originalsourceid><addsrcrecordid>eNpdkE1v1DAQhiNEJUrLD0BcLCTEKcVjx47NbVn6gdSqSJSzcRy7uMrGqSdB3X9fr3bVA5eZkeaZ0aunqt4DPQOg-svd6tf5GaNUl8Jky-FVdQxCqJq3ir_ezY2ohRbiTfUW8YFS1ihNj6s_a7ugHeK8JSvEeD9u_DgTO_bkJvV-IKtpyukpbuwc00hCyuRq2-XYk2-pMJfZTn-_kgu7DDP5Hu39mDAi-ekzTt7N8Z_H0-oo2AH9u0M_qX5fnN-tr-rr28sf69V17bho5lr3Xei6tu872XEWoNUWQHTgBGu4FlIC0xpY4y2z2jHaMO_blstgmxAc6_lJ9Xn_t-R9XDzOZhPR-WGwo08LGgVKcZBUF_Ljf-RDWvJYwhlJlQQpOC8Q7CGXE2L2wUy5WMhbA9TsjJudcbMzbg7Gy82nw2OLzg4h29FFfDlknDIqQBXuw56L3vuXtWCSaQX8GVaBiXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>608616533</pqid></control><display><type>article</type><title>Causality Assignment and Model Approximation for Hybrid Bond Graph: Fault Diagnosis Perspectives</title><source>IEEE Electronic Library (IEL)</source><creator>Chang Boon Low ; Danwei Wang ; Arogeti, Shai ; Jing Bing Zhang</creator><creatorcontrib>Chang Boon Low ; Danwei Wang ; Arogeti, Shai ; Jing Bing Zhang</creatorcontrib><description>Bond graph (BG) is an effective tool for modeling complex systems and it has been proven useful for fault detection and isolation (FDI) for continuous systems. BG provides the causal relations between system's variables which allow FDI algorithms to be developed systematically from the graph. In the same spirit, Hybrid bond graph (HBG) is a BG-based modeling approach which provides an avenue to model complex hybrid systems. However, due to mode-varying causality properties of HBG, HBG has not been efficiently-exploited for fault diagnosis. In this work, a comprehensive study on the HBG from FDI viewpoints is presented. Some properties pertaining to the HBG are gained in the study. Based on these findings, a causality assignment procedure and a model approximation technique are developed to achieve a HBG with a desirable causality assignment that leads a unified description of system's behavior. These results lay a foundation for quantitative FDI design for complex hybrid systems.</description><identifier>ISSN: 1545-5955</identifier><identifier>EISSN: 1558-3783</identifier><identifier>DOI: 10.1109/TASE.2009.2026731</identifier><identifier>CODEN: ITASC7</identifier><language>eng</language><publisher>Piscataway, NJ: IEEE</publisher><subject>Algorithms ; Analytical models ; Applied sciences ; Approximation ; Automation ; Bond graphs ; Bonding ; Causality assignment ; Complex systems ; Computer science; control theory; systems ; Continuous time systems ; Control theory. Systems ; Equations ; Exact sciences and technology ; Fasteners ; Fault detection ; Fault diagnosis ; fault diagnosis perspective ; hybrid bond graph (HBG) ; Hybrid systems ; Industrial metrology. Testing ; Mathematical analysis ; Mathematical models ; Mechanical engineering. Machine design ; Modelling and identification ; Monitoring ; Real time systems ; Safety</subject><ispartof>IEEE transactions on automation science and engineering, 2010-07, Vol.7 (3), p.570-580</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2010</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-9dbfbb7ddb6b32f179a115b1c524395661299124ea2a9c2042ee7736fa4ffc2d3</citedby><cites>FETCH-LOGICAL-c354t-9dbfbb7ddb6b32f179a115b1c524395661299124ea2a9c2042ee7736fa4ffc2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5262981$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5262981$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23020518$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang Boon Low</creatorcontrib><creatorcontrib>Danwei Wang</creatorcontrib><creatorcontrib>Arogeti, Shai</creatorcontrib><creatorcontrib>Jing Bing Zhang</creatorcontrib><title>Causality Assignment and Model Approximation for Hybrid Bond Graph: Fault Diagnosis Perspectives</title><title>IEEE transactions on automation science and engineering</title><addtitle>TASE</addtitle><description>Bond graph (BG) is an effective tool for modeling complex systems and it has been proven useful for fault detection and isolation (FDI) for continuous systems. BG provides the causal relations between system's variables which allow FDI algorithms to be developed systematically from the graph. In the same spirit, Hybrid bond graph (HBG) is a BG-based modeling approach which provides an avenue to model complex hybrid systems. However, due to mode-varying causality properties of HBG, HBG has not been efficiently-exploited for fault diagnosis. In this work, a comprehensive study on the HBG from FDI viewpoints is presented. Some properties pertaining to the HBG are gained in the study. Based on these findings, a causality assignment procedure and a model approximation technique are developed to achieve a HBG with a desirable causality assignment that leads a unified description of system's behavior. These results lay a foundation for quantitative FDI design for complex hybrid systems.</description><subject>Algorithms</subject><subject>Analytical models</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Automation</subject><subject>Bond graphs</subject><subject>Bonding</subject><subject>Causality assignment</subject><subject>Complex systems</subject><subject>Computer science; control theory; systems</subject><subject>Continuous time systems</subject><subject>Control theory. Systems</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Fasteners</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>fault diagnosis perspective</subject><subject>hybrid bond graph (HBG)</subject><subject>Hybrid systems</subject><subject>Industrial metrology. Testing</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical engineering. Machine design</subject><subject>Modelling and identification</subject><subject>Monitoring</subject><subject>Real time systems</subject><subject>Safety</subject><issn>1545-5955</issn><issn>1558-3783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1v1DAQhiNEJUrLD0BcLCTEKcVjx47NbVn6gdSqSJSzcRy7uMrGqSdB3X9fr3bVA5eZkeaZ0aunqt4DPQOg-svd6tf5GaNUl8Jky-FVdQxCqJq3ir_ezY2ohRbiTfUW8YFS1ihNj6s_a7ugHeK8JSvEeD9u_DgTO_bkJvV-IKtpyukpbuwc00hCyuRq2-XYk2-pMJfZTn-_kgu7DDP5Hu39mDAi-ekzTt7N8Z_H0-oo2AH9u0M_qX5fnN-tr-rr28sf69V17bho5lr3Xei6tu872XEWoNUWQHTgBGu4FlIC0xpY4y2z2jHaMO_blstgmxAc6_lJ9Xn_t-R9XDzOZhPR-WGwo08LGgVKcZBUF_Ljf-RDWvJYwhlJlQQpOC8Q7CGXE2L2wUy5WMhbA9TsjJudcbMzbg7Gy82nw2OLzg4h29FFfDlknDIqQBXuw56L3vuXtWCSaQX8GVaBiXQ</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Chang Boon Low</creator><creator>Danwei Wang</creator><creator>Arogeti, Shai</creator><creator>Jing Bing Zhang</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20100701</creationdate><title>Causality Assignment and Model Approximation for Hybrid Bond Graph: Fault Diagnosis Perspectives</title><author>Chang Boon Low ; Danwei Wang ; Arogeti, Shai ; Jing Bing Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-9dbfbb7ddb6b32f179a115b1c524395661299124ea2a9c2042ee7736fa4ffc2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Analytical models</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Automation</topic><topic>Bond graphs</topic><topic>Bonding</topic><topic>Causality assignment</topic><topic>Complex systems</topic><topic>Computer science; control theory; systems</topic><topic>Continuous time systems</topic><topic>Control theory. Systems</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Fasteners</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>fault diagnosis perspective</topic><topic>hybrid bond graph (HBG)</topic><topic>Hybrid systems</topic><topic>Industrial metrology. Testing</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical engineering. Machine design</topic><topic>Modelling and identification</topic><topic>Monitoring</topic><topic>Real time systems</topic><topic>Safety</topic><toplevel>online_resources</toplevel><creatorcontrib>Chang Boon Low</creatorcontrib><creatorcontrib>Danwei Wang</creatorcontrib><creatorcontrib>Arogeti, Shai</creatorcontrib><creatorcontrib>Jing Bing Zhang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on automation science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chang Boon Low</au><au>Danwei Wang</au><au>Arogeti, Shai</au><au>Jing Bing Zhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Causality Assignment and Model Approximation for Hybrid Bond Graph: Fault Diagnosis Perspectives</atitle><jtitle>IEEE transactions on automation science and engineering</jtitle><stitle>TASE</stitle><date>2010-07-01</date><risdate>2010</risdate><volume>7</volume><issue>3</issue><spage>570</spage><epage>580</epage><pages>570-580</pages><issn>1545-5955</issn><eissn>1558-3783</eissn><coden>ITASC7</coden><abstract>Bond graph (BG) is an effective tool for modeling complex systems and it has been proven useful for fault detection and isolation (FDI) for continuous systems. BG provides the causal relations between system's variables which allow FDI algorithms to be developed systematically from the graph. In the same spirit, Hybrid bond graph (HBG) is a BG-based modeling approach which provides an avenue to model complex hybrid systems. However, due to mode-varying causality properties of HBG, HBG has not been efficiently-exploited for fault diagnosis. In this work, a comprehensive study on the HBG from FDI viewpoints is presented. Some properties pertaining to the HBG are gained in the study. Based on these findings, a causality assignment procedure and a model approximation technique are developed to achieve a HBG with a desirable causality assignment that leads a unified description of system's behavior. These results lay a foundation for quantitative FDI design for complex hybrid systems.</abstract><cop>Piscataway, NJ</cop><pub>IEEE</pub><doi>10.1109/TASE.2009.2026731</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-5955
ispartof IEEE transactions on automation science and engineering, 2010-07, Vol.7 (3), p.570-580
issn 1545-5955
1558-3783
language eng
recordid cdi_crossref_primary_10_1109_TASE_2009_2026731
source IEEE Electronic Library (IEL)
subjects Algorithms
Analytical models
Applied sciences
Approximation
Automation
Bond graphs
Bonding
Causality assignment
Complex systems
Computer science
control theory
systems
Continuous time systems
Control theory. Systems
Equations
Exact sciences and technology
Fasteners
Fault detection
Fault diagnosis
fault diagnosis perspective
hybrid bond graph (HBG)
Hybrid systems
Industrial metrology. Testing
Mathematical analysis
Mathematical models
Mechanical engineering. Machine design
Modelling and identification
Monitoring
Real time systems
Safety
title Causality Assignment and Model Approximation for Hybrid Bond Graph: Fault Diagnosis Perspectives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T11%3A18%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Causality%20Assignment%20and%20Model%20Approximation%20for%20Hybrid%20Bond%20Graph:%20Fault%20Diagnosis%20Perspectives&rft.jtitle=IEEE%20transactions%20on%20automation%20science%20and%20engineering&rft.au=Chang%20Boon%20Low&rft.date=2010-07-01&rft.volume=7&rft.issue=3&rft.spage=570&rft.epage=580&rft.pages=570-580&rft.issn=1545-5955&rft.eissn=1558-3783&rft.coden=ITASC7&rft_id=info:doi/10.1109/TASE.2009.2026731&rft_dat=%3Cproquest_RIE%3E2079012561%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=608616533&rft_id=info:pmid/&rft_ieee_id=5262981&rfr_iscdi=true