Research on the Radial Crimping Process for Stacked High-Temperature Superconducting Cable-in-Conduit Conductor

The radial crimping process is a crucial step in fabricating stacked high-temperature superconducting (HTS) cable-in-conduit conductor (CICC) made with rare earth barium copper oxide (REBCO) HTS tapes for the application of large-scale HTS magnets at low temperatures. This paper presents theoretical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2024-05, Vol.34 (3), p.1-6
Hauptverfasser: Yang, Shige, Tang, Bohan, Xie, Bowen, Li, Sicheng, Tao, Yafei, Chen, Yanquan, Li, Guoruihang, Shang, Wangnan, Hong, Sheng, Jiang, Shili, Yu, Hui, Chen, Zhiyou, Chen, Wenge, Jiang, Donghui, Kuang, Guangli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 3
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 34
creator Yang, Shige
Tang, Bohan
Xie, Bowen
Li, Sicheng
Tao, Yafei
Chen, Yanquan
Li, Guoruihang
Shang, Wangnan
Hong, Sheng
Jiang, Shili
Yu, Hui
Chen, Zhiyou
Chen, Wenge
Jiang, Donghui
Kuang, Guangli
description The radial crimping process is a crucial step in fabricating stacked high-temperature superconducting (HTS) cable-in-conduit conductor (CICC) made with rare earth barium copper oxide (REBCO) HTS tapes for the application of large-scale HTS magnets at low temperatures. This paper presents theoretical research on the forming principle and correlated law of the radial crimping process for stacked HTS CICC. Firstly, a finite element model is developed to simulate the forming process of the conductor under the conditions of the radial crimping process steps. Subsequently, the changes in the wall thickness of the jacket, the stress-strain distribution of the conductor, and the deformation characteristics of the stacked tapes during the forming process are analyzed. Finally, by comparing the calculated results with the experimental ones, the effects of different crimping steps on the forming quality of the conductor are studied. This research can provide significant references for optimizing the manufacturing process of stacked HTS CICCs and improving the overall performance of the conductor.
doi_str_mv 10.1109/TASC.2024.3379110
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TASC_2024_3379110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10475485</ieee_id><sourcerecordid>3035282322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-8d1837752f69ad48384dc88b8d5726ff6c442787739beb72c46ae511d1a283273</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EEqXwAEgcLHFOif9i51hFQJEqgdpythx706a0cbCTA29PonDgtKPdmV3th9A9SReEpPnTbrktFjSlfMGYzIfWBZoRIVRCBRGXg04FSRSl7BrdxHhMU8IVFzPkNxDBBHvAvsHdAfDGuNqccBHqc1s3e_wRvIUYceUD3nbGfoHDq3p_SHZwbiGYrg-At_0grW9cb7sxVJjyBEndJMXYqztcTDMfbtFVZU4R7v7qHH2-PO-KVbJ-f30rluvEUp51iXJEMSkFrbLcOK6Y4s4qVSonJM2qKrOcU6mkZHkJpaSWZwYEIY4YqhiVbI4ep71t8N89xE4ffR-a4aRmKRNUUTbAmCMyuWzwMQaodDv8bcKPJqkeueqRqx656j-uQ-ZhytQA8M_PpeBKsF-hMHQJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035282322</pqid></control><display><type>article</type><title>Research on the Radial Crimping Process for Stacked High-Temperature Superconducting Cable-in-Conduit Conductor</title><source>IEEE Xplore</source><creator>Yang, Shige ; Tang, Bohan ; Xie, Bowen ; Li, Sicheng ; Tao, Yafei ; Chen, Yanquan ; Li, Guoruihang ; Shang, Wangnan ; Hong, Sheng ; Jiang, Shili ; Yu, Hui ; Chen, Zhiyou ; Chen, Wenge ; Jiang, Donghui ; Kuang, Guangli</creator><creatorcontrib>Yang, Shige ; Tang, Bohan ; Xie, Bowen ; Li, Sicheng ; Tao, Yafei ; Chen, Yanquan ; Li, Guoruihang ; Shang, Wangnan ; Hong, Sheng ; Jiang, Shili ; Yu, Hui ; Chen, Zhiyou ; Chen, Wenge ; Jiang, Donghui ; Kuang, Guangli</creatorcontrib><description>The radial crimping process is a crucial step in fabricating stacked high-temperature superconducting (HTS) cable-in-conduit conductor (CICC) made with rare earth barium copper oxide (REBCO) HTS tapes for the application of large-scale HTS magnets at low temperatures. This paper presents theoretical research on the forming principle and correlated law of the radial crimping process for stacked HTS CICC. Firstly, a finite element model is developed to simulate the forming process of the conductor under the conditions of the radial crimping process steps. Subsequently, the changes in the wall thickness of the jacket, the stress-strain distribution of the conductor, and the deformation characteristics of the stacked tapes during the forming process are analyzed. Finally, by comparing the calculated results with the experimental ones, the effects of different crimping steps on the forming quality of the conductor are studied. This research can provide significant references for optimizing the manufacturing process of stacked HTS CICCs and improving the overall performance of the conductor.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2024.3379110</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Barium ; Conductors ; Copper ; Copper oxides ; Crimping ; Finite element method ; Folding ; High temperature ; High temperature superconductors ; Low temperature ; Magnets ; radial crimping ; REBCO ; stacked HTS CICC ; Strain distribution ; Strain measurement ; Superconducting cables ; Superconductivity ; Temperature measurement</subject><ispartof>IEEE transactions on applied superconductivity, 2024-05, Vol.34 (3), p.1-6</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-8d1837752f69ad48384dc88b8d5726ff6c442787739beb72c46ae511d1a283273</cites><orcidid>0009-0004-1691-308X ; 0009-0001-4692-7712 ; 0009-0008-8811-4809 ; 0000-0002-7483-4708 ; 0009-0006-8289-7828 ; 0009-0007-7761-0359 ; 0009-0004-5857-5103 ; 0009-0009-1065-2137 ; 0009-0002-0991-3917 ; 0009-0005-2381-1732 ; 0009-0006-7899-7842 ; 0009-0009-0135-0620 ; 0009-0009-8670-4204 ; 0009-0000-7203-4515 ; 0000-0002-9917-7871</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10475485$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10475485$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Shige</creatorcontrib><creatorcontrib>Tang, Bohan</creatorcontrib><creatorcontrib>Xie, Bowen</creatorcontrib><creatorcontrib>Li, Sicheng</creatorcontrib><creatorcontrib>Tao, Yafei</creatorcontrib><creatorcontrib>Chen, Yanquan</creatorcontrib><creatorcontrib>Li, Guoruihang</creatorcontrib><creatorcontrib>Shang, Wangnan</creatorcontrib><creatorcontrib>Hong, Sheng</creatorcontrib><creatorcontrib>Jiang, Shili</creatorcontrib><creatorcontrib>Yu, Hui</creatorcontrib><creatorcontrib>Chen, Zhiyou</creatorcontrib><creatorcontrib>Chen, Wenge</creatorcontrib><creatorcontrib>Jiang, Donghui</creatorcontrib><creatorcontrib>Kuang, Guangli</creatorcontrib><title>Research on the Radial Crimping Process for Stacked High-Temperature Superconducting Cable-in-Conduit Conductor</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The radial crimping process is a crucial step in fabricating stacked high-temperature superconducting (HTS) cable-in-conduit conductor (CICC) made with rare earth barium copper oxide (REBCO) HTS tapes for the application of large-scale HTS magnets at low temperatures. This paper presents theoretical research on the forming principle and correlated law of the radial crimping process for stacked HTS CICC. Firstly, a finite element model is developed to simulate the forming process of the conductor under the conditions of the radial crimping process steps. Subsequently, the changes in the wall thickness of the jacket, the stress-strain distribution of the conductor, and the deformation characteristics of the stacked tapes during the forming process are analyzed. Finally, by comparing the calculated results with the experimental ones, the effects of different crimping steps on the forming quality of the conductor are studied. This research can provide significant references for optimizing the manufacturing process of stacked HTS CICCs and improving the overall performance of the conductor.</description><subject>Barium</subject><subject>Conductors</subject><subject>Copper</subject><subject>Copper oxides</subject><subject>Crimping</subject><subject>Finite element method</subject><subject>Folding</subject><subject>High temperature</subject><subject>High temperature superconductors</subject><subject>Low temperature</subject><subject>Magnets</subject><subject>radial crimping</subject><subject>REBCO</subject><subject>stacked HTS CICC</subject><subject>Strain distribution</subject><subject>Strain measurement</subject><subject>Superconducting cables</subject><subject>Superconductivity</subject><subject>Temperature measurement</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1OwzAQhC0EEqXwAEgcLHFOif9i51hFQJEqgdpythx706a0cbCTA29PonDgtKPdmV3th9A9SReEpPnTbrktFjSlfMGYzIfWBZoRIVRCBRGXg04FSRSl7BrdxHhMU8IVFzPkNxDBBHvAvsHdAfDGuNqccBHqc1s3e_wRvIUYceUD3nbGfoHDq3p_SHZwbiGYrg-At_0grW9cb7sxVJjyBEndJMXYqztcTDMfbtFVZU4R7v7qHH2-PO-KVbJ-f30rluvEUp51iXJEMSkFrbLcOK6Y4s4qVSonJM2qKrOcU6mkZHkJpaSWZwYEIY4YqhiVbI4ep71t8N89xE4ffR-a4aRmKRNUUTbAmCMyuWzwMQaodDv8bcKPJqkeueqRqx656j-uQ-ZhytQA8M_PpeBKsF-hMHQJ</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Yang, Shige</creator><creator>Tang, Bohan</creator><creator>Xie, Bowen</creator><creator>Li, Sicheng</creator><creator>Tao, Yafei</creator><creator>Chen, Yanquan</creator><creator>Li, Guoruihang</creator><creator>Shang, Wangnan</creator><creator>Hong, Sheng</creator><creator>Jiang, Shili</creator><creator>Yu, Hui</creator><creator>Chen, Zhiyou</creator><creator>Chen, Wenge</creator><creator>Jiang, Donghui</creator><creator>Kuang, Guangli</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0004-1691-308X</orcidid><orcidid>https://orcid.org/0009-0001-4692-7712</orcidid><orcidid>https://orcid.org/0009-0008-8811-4809</orcidid><orcidid>https://orcid.org/0000-0002-7483-4708</orcidid><orcidid>https://orcid.org/0009-0006-8289-7828</orcidid><orcidid>https://orcid.org/0009-0007-7761-0359</orcidid><orcidid>https://orcid.org/0009-0004-5857-5103</orcidid><orcidid>https://orcid.org/0009-0009-1065-2137</orcidid><orcidid>https://orcid.org/0009-0002-0991-3917</orcidid><orcidid>https://orcid.org/0009-0005-2381-1732</orcidid><orcidid>https://orcid.org/0009-0006-7899-7842</orcidid><orcidid>https://orcid.org/0009-0009-0135-0620</orcidid><orcidid>https://orcid.org/0009-0009-8670-4204</orcidid><orcidid>https://orcid.org/0009-0000-7203-4515</orcidid><orcidid>https://orcid.org/0000-0002-9917-7871</orcidid></search><sort><creationdate>20240501</creationdate><title>Research on the Radial Crimping Process for Stacked High-Temperature Superconducting Cable-in-Conduit Conductor</title><author>Yang, Shige ; Tang, Bohan ; Xie, Bowen ; Li, Sicheng ; Tao, Yafei ; Chen, Yanquan ; Li, Guoruihang ; Shang, Wangnan ; Hong, Sheng ; Jiang, Shili ; Yu, Hui ; Chen, Zhiyou ; Chen, Wenge ; Jiang, Donghui ; Kuang, Guangli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-8d1837752f69ad48384dc88b8d5726ff6c442787739beb72c46ae511d1a283273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Barium</topic><topic>Conductors</topic><topic>Copper</topic><topic>Copper oxides</topic><topic>Crimping</topic><topic>Finite element method</topic><topic>Folding</topic><topic>High temperature</topic><topic>High temperature superconductors</topic><topic>Low temperature</topic><topic>Magnets</topic><topic>radial crimping</topic><topic>REBCO</topic><topic>stacked HTS CICC</topic><topic>Strain distribution</topic><topic>Strain measurement</topic><topic>Superconducting cables</topic><topic>Superconductivity</topic><topic>Temperature measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Shige</creatorcontrib><creatorcontrib>Tang, Bohan</creatorcontrib><creatorcontrib>Xie, Bowen</creatorcontrib><creatorcontrib>Li, Sicheng</creatorcontrib><creatorcontrib>Tao, Yafei</creatorcontrib><creatorcontrib>Chen, Yanquan</creatorcontrib><creatorcontrib>Li, Guoruihang</creatorcontrib><creatorcontrib>Shang, Wangnan</creatorcontrib><creatorcontrib>Hong, Sheng</creatorcontrib><creatorcontrib>Jiang, Shili</creatorcontrib><creatorcontrib>Yu, Hui</creatorcontrib><creatorcontrib>Chen, Zhiyou</creatorcontrib><creatorcontrib>Chen, Wenge</creatorcontrib><creatorcontrib>Jiang, Donghui</creatorcontrib><creatorcontrib>Kuang, Guangli</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Shige</au><au>Tang, Bohan</au><au>Xie, Bowen</au><au>Li, Sicheng</au><au>Tao, Yafei</au><au>Chen, Yanquan</au><au>Li, Guoruihang</au><au>Shang, Wangnan</au><au>Hong, Sheng</au><au>Jiang, Shili</au><au>Yu, Hui</au><au>Chen, Zhiyou</au><au>Chen, Wenge</au><au>Jiang, Donghui</au><au>Kuang, Guangli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on the Radial Crimping Process for Stacked High-Temperature Superconducting Cable-in-Conduit Conductor</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>34</volume><issue>3</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The radial crimping process is a crucial step in fabricating stacked high-temperature superconducting (HTS) cable-in-conduit conductor (CICC) made with rare earth barium copper oxide (REBCO) HTS tapes for the application of large-scale HTS magnets at low temperatures. This paper presents theoretical research on the forming principle and correlated law of the radial crimping process for stacked HTS CICC. Firstly, a finite element model is developed to simulate the forming process of the conductor under the conditions of the radial crimping process steps. Subsequently, the changes in the wall thickness of the jacket, the stress-strain distribution of the conductor, and the deformation characteristics of the stacked tapes during the forming process are analyzed. Finally, by comparing the calculated results with the experimental ones, the effects of different crimping steps on the forming quality of the conductor are studied. This research can provide significant references for optimizing the manufacturing process of stacked HTS CICCs and improving the overall performance of the conductor.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2024.3379110</doi><tpages>6</tpages><orcidid>https://orcid.org/0009-0004-1691-308X</orcidid><orcidid>https://orcid.org/0009-0001-4692-7712</orcidid><orcidid>https://orcid.org/0009-0008-8811-4809</orcidid><orcidid>https://orcid.org/0000-0002-7483-4708</orcidid><orcidid>https://orcid.org/0009-0006-8289-7828</orcidid><orcidid>https://orcid.org/0009-0007-7761-0359</orcidid><orcidid>https://orcid.org/0009-0004-5857-5103</orcidid><orcidid>https://orcid.org/0009-0009-1065-2137</orcidid><orcidid>https://orcid.org/0009-0002-0991-3917</orcidid><orcidid>https://orcid.org/0009-0005-2381-1732</orcidid><orcidid>https://orcid.org/0009-0006-7899-7842</orcidid><orcidid>https://orcid.org/0009-0009-0135-0620</orcidid><orcidid>https://orcid.org/0009-0009-8670-4204</orcidid><orcidid>https://orcid.org/0009-0000-7203-4515</orcidid><orcidid>https://orcid.org/0000-0002-9917-7871</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2024-05, Vol.34 (3), p.1-6
issn 1051-8223
1558-2515
language eng
recordid cdi_crossref_primary_10_1109_TASC_2024_3379110
source IEEE Xplore
subjects Barium
Conductors
Copper
Copper oxides
Crimping
Finite element method
Folding
High temperature
High temperature superconductors
Low temperature
Magnets
radial crimping
REBCO
stacked HTS CICC
Strain distribution
Strain measurement
Superconducting cables
Superconductivity
Temperature measurement
title Research on the Radial Crimping Process for Stacked High-Temperature Superconducting Cable-in-Conduit Conductor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T21%3A46%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20the%20Radial%20Crimping%20Process%20for%20Stacked%20High-Temperature%20Superconducting%20Cable-in-Conduit%20Conductor&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Yang,%20Shige&rft.date=2024-05-01&rft.volume=34&rft.issue=3&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2024.3379110&rft_dat=%3Cproquest_RIE%3E3035282322%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3035282322&rft_id=info:pmid/&rft_ieee_id=10475485&rfr_iscdi=true