Research on the Radial Crimping Process for Stacked High-Temperature Superconducting Cable-in-Conduit Conductor
The radial crimping process is a crucial step in fabricating stacked high-temperature superconducting (HTS) cable-in-conduit conductor (CICC) made with rare earth barium copper oxide (REBCO) HTS tapes for the application of large-scale HTS magnets at low temperatures. This paper presents theoretical...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2024-05, Vol.34 (3), p.1-6 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 34 |
creator | Yang, Shige Tang, Bohan Xie, Bowen Li, Sicheng Tao, Yafei Chen, Yanquan Li, Guoruihang Shang, Wangnan Hong, Sheng Jiang, Shili Yu, Hui Chen, Zhiyou Chen, Wenge Jiang, Donghui Kuang, Guangli |
description | The radial crimping process is a crucial step in fabricating stacked high-temperature superconducting (HTS) cable-in-conduit conductor (CICC) made with rare earth barium copper oxide (REBCO) HTS tapes for the application of large-scale HTS magnets at low temperatures. This paper presents theoretical research on the forming principle and correlated law of the radial crimping process for stacked HTS CICC. Firstly, a finite element model is developed to simulate the forming process of the conductor under the conditions of the radial crimping process steps. Subsequently, the changes in the wall thickness of the jacket, the stress-strain distribution of the conductor, and the deformation characteristics of the stacked tapes during the forming process are analyzed. Finally, by comparing the calculated results with the experimental ones, the effects of different crimping steps on the forming quality of the conductor are studied. This research can provide significant references for optimizing the manufacturing process of stacked HTS CICCs and improving the overall performance of the conductor. |
doi_str_mv | 10.1109/TASC.2024.3379110 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TASC_2024_3379110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10475485</ieee_id><sourcerecordid>3035282322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-8d1837752f69ad48384dc88b8d5726ff6c442787739beb72c46ae511d1a283273</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EEqXwAEgcLHFOif9i51hFQJEqgdpythx706a0cbCTA29PonDgtKPdmV3th9A9SReEpPnTbrktFjSlfMGYzIfWBZoRIVRCBRGXg04FSRSl7BrdxHhMU8IVFzPkNxDBBHvAvsHdAfDGuNqccBHqc1s3e_wRvIUYceUD3nbGfoHDq3p_SHZwbiGYrg-At_0grW9cb7sxVJjyBEndJMXYqztcTDMfbtFVZU4R7v7qHH2-PO-KVbJ-f30rluvEUp51iXJEMSkFrbLcOK6Y4s4qVSonJM2qKrOcU6mkZHkJpaSWZwYEIY4YqhiVbI4ep71t8N89xE4ffR-a4aRmKRNUUTbAmCMyuWzwMQaodDv8bcKPJqkeueqRqx656j-uQ-ZhytQA8M_PpeBKsF-hMHQJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035282322</pqid></control><display><type>article</type><title>Research on the Radial Crimping Process for Stacked High-Temperature Superconducting Cable-in-Conduit Conductor</title><source>IEEE Xplore</source><creator>Yang, Shige ; Tang, Bohan ; Xie, Bowen ; Li, Sicheng ; Tao, Yafei ; Chen, Yanquan ; Li, Guoruihang ; Shang, Wangnan ; Hong, Sheng ; Jiang, Shili ; Yu, Hui ; Chen, Zhiyou ; Chen, Wenge ; Jiang, Donghui ; Kuang, Guangli</creator><creatorcontrib>Yang, Shige ; Tang, Bohan ; Xie, Bowen ; Li, Sicheng ; Tao, Yafei ; Chen, Yanquan ; Li, Guoruihang ; Shang, Wangnan ; Hong, Sheng ; Jiang, Shili ; Yu, Hui ; Chen, Zhiyou ; Chen, Wenge ; Jiang, Donghui ; Kuang, Guangli</creatorcontrib><description>The radial crimping process is a crucial step in fabricating stacked high-temperature superconducting (HTS) cable-in-conduit conductor (CICC) made with rare earth barium copper oxide (REBCO) HTS tapes for the application of large-scale HTS magnets at low temperatures. This paper presents theoretical research on the forming principle and correlated law of the radial crimping process for stacked HTS CICC. Firstly, a finite element model is developed to simulate the forming process of the conductor under the conditions of the radial crimping process steps. Subsequently, the changes in the wall thickness of the jacket, the stress-strain distribution of the conductor, and the deformation characteristics of the stacked tapes during the forming process are analyzed. Finally, by comparing the calculated results with the experimental ones, the effects of different crimping steps on the forming quality of the conductor are studied. This research can provide significant references for optimizing the manufacturing process of stacked HTS CICCs and improving the overall performance of the conductor.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2024.3379110</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Barium ; Conductors ; Copper ; Copper oxides ; Crimping ; Finite element method ; Folding ; High temperature ; High temperature superconductors ; Low temperature ; Magnets ; radial crimping ; REBCO ; stacked HTS CICC ; Strain distribution ; Strain measurement ; Superconducting cables ; Superconductivity ; Temperature measurement</subject><ispartof>IEEE transactions on applied superconductivity, 2024-05, Vol.34 (3), p.1-6</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-8d1837752f69ad48384dc88b8d5726ff6c442787739beb72c46ae511d1a283273</cites><orcidid>0009-0004-1691-308X ; 0009-0001-4692-7712 ; 0009-0008-8811-4809 ; 0000-0002-7483-4708 ; 0009-0006-8289-7828 ; 0009-0007-7761-0359 ; 0009-0004-5857-5103 ; 0009-0009-1065-2137 ; 0009-0002-0991-3917 ; 0009-0005-2381-1732 ; 0009-0006-7899-7842 ; 0009-0009-0135-0620 ; 0009-0009-8670-4204 ; 0009-0000-7203-4515 ; 0000-0002-9917-7871</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10475485$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10475485$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Shige</creatorcontrib><creatorcontrib>Tang, Bohan</creatorcontrib><creatorcontrib>Xie, Bowen</creatorcontrib><creatorcontrib>Li, Sicheng</creatorcontrib><creatorcontrib>Tao, Yafei</creatorcontrib><creatorcontrib>Chen, Yanquan</creatorcontrib><creatorcontrib>Li, Guoruihang</creatorcontrib><creatorcontrib>Shang, Wangnan</creatorcontrib><creatorcontrib>Hong, Sheng</creatorcontrib><creatorcontrib>Jiang, Shili</creatorcontrib><creatorcontrib>Yu, Hui</creatorcontrib><creatorcontrib>Chen, Zhiyou</creatorcontrib><creatorcontrib>Chen, Wenge</creatorcontrib><creatorcontrib>Jiang, Donghui</creatorcontrib><creatorcontrib>Kuang, Guangli</creatorcontrib><title>Research on the Radial Crimping Process for Stacked High-Temperature Superconducting Cable-in-Conduit Conductor</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The radial crimping process is a crucial step in fabricating stacked high-temperature superconducting (HTS) cable-in-conduit conductor (CICC) made with rare earth barium copper oxide (REBCO) HTS tapes for the application of large-scale HTS magnets at low temperatures. This paper presents theoretical research on the forming principle and correlated law of the radial crimping process for stacked HTS CICC. Firstly, a finite element model is developed to simulate the forming process of the conductor under the conditions of the radial crimping process steps. Subsequently, the changes in the wall thickness of the jacket, the stress-strain distribution of the conductor, and the deformation characteristics of the stacked tapes during the forming process are analyzed. Finally, by comparing the calculated results with the experimental ones, the effects of different crimping steps on the forming quality of the conductor are studied. This research can provide significant references for optimizing the manufacturing process of stacked HTS CICCs and improving the overall performance of the conductor.</description><subject>Barium</subject><subject>Conductors</subject><subject>Copper</subject><subject>Copper oxides</subject><subject>Crimping</subject><subject>Finite element method</subject><subject>Folding</subject><subject>High temperature</subject><subject>High temperature superconductors</subject><subject>Low temperature</subject><subject>Magnets</subject><subject>radial crimping</subject><subject>REBCO</subject><subject>stacked HTS CICC</subject><subject>Strain distribution</subject><subject>Strain measurement</subject><subject>Superconducting cables</subject><subject>Superconductivity</subject><subject>Temperature measurement</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1OwzAQhC0EEqXwAEgcLHFOif9i51hFQJEqgdpythx706a0cbCTA29PonDgtKPdmV3th9A9SReEpPnTbrktFjSlfMGYzIfWBZoRIVRCBRGXg04FSRSl7BrdxHhMU8IVFzPkNxDBBHvAvsHdAfDGuNqccBHqc1s3e_wRvIUYceUD3nbGfoHDq3p_SHZwbiGYrg-At_0grW9cb7sxVJjyBEndJMXYqztcTDMfbtFVZU4R7v7qHH2-PO-KVbJ-f30rluvEUp51iXJEMSkFrbLcOK6Y4s4qVSonJM2qKrOcU6mkZHkJpaSWZwYEIY4YqhiVbI4ep71t8N89xE4ffR-a4aRmKRNUUTbAmCMyuWzwMQaodDv8bcKPJqkeueqRqx656j-uQ-ZhytQA8M_PpeBKsF-hMHQJ</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Yang, Shige</creator><creator>Tang, Bohan</creator><creator>Xie, Bowen</creator><creator>Li, Sicheng</creator><creator>Tao, Yafei</creator><creator>Chen, Yanquan</creator><creator>Li, Guoruihang</creator><creator>Shang, Wangnan</creator><creator>Hong, Sheng</creator><creator>Jiang, Shili</creator><creator>Yu, Hui</creator><creator>Chen, Zhiyou</creator><creator>Chen, Wenge</creator><creator>Jiang, Donghui</creator><creator>Kuang, Guangli</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0004-1691-308X</orcidid><orcidid>https://orcid.org/0009-0001-4692-7712</orcidid><orcidid>https://orcid.org/0009-0008-8811-4809</orcidid><orcidid>https://orcid.org/0000-0002-7483-4708</orcidid><orcidid>https://orcid.org/0009-0006-8289-7828</orcidid><orcidid>https://orcid.org/0009-0007-7761-0359</orcidid><orcidid>https://orcid.org/0009-0004-5857-5103</orcidid><orcidid>https://orcid.org/0009-0009-1065-2137</orcidid><orcidid>https://orcid.org/0009-0002-0991-3917</orcidid><orcidid>https://orcid.org/0009-0005-2381-1732</orcidid><orcidid>https://orcid.org/0009-0006-7899-7842</orcidid><orcidid>https://orcid.org/0009-0009-0135-0620</orcidid><orcidid>https://orcid.org/0009-0009-8670-4204</orcidid><orcidid>https://orcid.org/0009-0000-7203-4515</orcidid><orcidid>https://orcid.org/0000-0002-9917-7871</orcidid></search><sort><creationdate>20240501</creationdate><title>Research on the Radial Crimping Process for Stacked High-Temperature Superconducting Cable-in-Conduit Conductor</title><author>Yang, Shige ; Tang, Bohan ; Xie, Bowen ; Li, Sicheng ; Tao, Yafei ; Chen, Yanquan ; Li, Guoruihang ; Shang, Wangnan ; Hong, Sheng ; Jiang, Shili ; Yu, Hui ; Chen, Zhiyou ; Chen, Wenge ; Jiang, Donghui ; Kuang, Guangli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-8d1837752f69ad48384dc88b8d5726ff6c442787739beb72c46ae511d1a283273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Barium</topic><topic>Conductors</topic><topic>Copper</topic><topic>Copper oxides</topic><topic>Crimping</topic><topic>Finite element method</topic><topic>Folding</topic><topic>High temperature</topic><topic>High temperature superconductors</topic><topic>Low temperature</topic><topic>Magnets</topic><topic>radial crimping</topic><topic>REBCO</topic><topic>stacked HTS CICC</topic><topic>Strain distribution</topic><topic>Strain measurement</topic><topic>Superconducting cables</topic><topic>Superconductivity</topic><topic>Temperature measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Shige</creatorcontrib><creatorcontrib>Tang, Bohan</creatorcontrib><creatorcontrib>Xie, Bowen</creatorcontrib><creatorcontrib>Li, Sicheng</creatorcontrib><creatorcontrib>Tao, Yafei</creatorcontrib><creatorcontrib>Chen, Yanquan</creatorcontrib><creatorcontrib>Li, Guoruihang</creatorcontrib><creatorcontrib>Shang, Wangnan</creatorcontrib><creatorcontrib>Hong, Sheng</creatorcontrib><creatorcontrib>Jiang, Shili</creatorcontrib><creatorcontrib>Yu, Hui</creatorcontrib><creatorcontrib>Chen, Zhiyou</creatorcontrib><creatorcontrib>Chen, Wenge</creatorcontrib><creatorcontrib>Jiang, Donghui</creatorcontrib><creatorcontrib>Kuang, Guangli</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Shige</au><au>Tang, Bohan</au><au>Xie, Bowen</au><au>Li, Sicheng</au><au>Tao, Yafei</au><au>Chen, Yanquan</au><au>Li, Guoruihang</au><au>Shang, Wangnan</au><au>Hong, Sheng</au><au>Jiang, Shili</au><au>Yu, Hui</au><au>Chen, Zhiyou</au><au>Chen, Wenge</au><au>Jiang, Donghui</au><au>Kuang, Guangli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on the Radial Crimping Process for Stacked High-Temperature Superconducting Cable-in-Conduit Conductor</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>34</volume><issue>3</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The radial crimping process is a crucial step in fabricating stacked high-temperature superconducting (HTS) cable-in-conduit conductor (CICC) made with rare earth barium copper oxide (REBCO) HTS tapes for the application of large-scale HTS magnets at low temperatures. This paper presents theoretical research on the forming principle and correlated law of the radial crimping process for stacked HTS CICC. Firstly, a finite element model is developed to simulate the forming process of the conductor under the conditions of the radial crimping process steps. Subsequently, the changes in the wall thickness of the jacket, the stress-strain distribution of the conductor, and the deformation characteristics of the stacked tapes during the forming process are analyzed. Finally, by comparing the calculated results with the experimental ones, the effects of different crimping steps on the forming quality of the conductor are studied. This research can provide significant references for optimizing the manufacturing process of stacked HTS CICCs and improving the overall performance of the conductor.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2024.3379110</doi><tpages>6</tpages><orcidid>https://orcid.org/0009-0004-1691-308X</orcidid><orcidid>https://orcid.org/0009-0001-4692-7712</orcidid><orcidid>https://orcid.org/0009-0008-8811-4809</orcidid><orcidid>https://orcid.org/0000-0002-7483-4708</orcidid><orcidid>https://orcid.org/0009-0006-8289-7828</orcidid><orcidid>https://orcid.org/0009-0007-7761-0359</orcidid><orcidid>https://orcid.org/0009-0004-5857-5103</orcidid><orcidid>https://orcid.org/0009-0009-1065-2137</orcidid><orcidid>https://orcid.org/0009-0002-0991-3917</orcidid><orcidid>https://orcid.org/0009-0005-2381-1732</orcidid><orcidid>https://orcid.org/0009-0006-7899-7842</orcidid><orcidid>https://orcid.org/0009-0009-0135-0620</orcidid><orcidid>https://orcid.org/0009-0009-8670-4204</orcidid><orcidid>https://orcid.org/0009-0000-7203-4515</orcidid><orcidid>https://orcid.org/0000-0002-9917-7871</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2024-05, Vol.34 (3), p.1-6 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TASC_2024_3379110 |
source | IEEE Xplore |
subjects | Barium Conductors Copper Copper oxides Crimping Finite element method Folding High temperature High temperature superconductors Low temperature Magnets radial crimping REBCO stacked HTS CICC Strain distribution Strain measurement Superconducting cables Superconductivity Temperature measurement |
title | Research on the Radial Crimping Process for Stacked High-Temperature Superconducting Cable-in-Conduit Conductor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T21%3A46%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20the%20Radial%20Crimping%20Process%20for%20Stacked%20High-Temperature%20Superconducting%20Cable-in-Conduit%20Conductor&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Yang,%20Shige&rft.date=2024-05-01&rft.volume=34&rft.issue=3&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2024.3379110&rft_dat=%3Cproquest_RIE%3E3035282322%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3035282322&rft_id=info:pmid/&rft_ieee_id=10475485&rfr_iscdi=true |