Superconducting Cable Modelling Into Electro- Magnetic Transient Simulation Tool

The European project SCARLET aims to study and realize a demonstrator of a MVDC (Medium Voltage Direct Current) high-power superconducting cable. This device might be employed to connect offshore wind farms with land, expecting to significantly simplify the offshore platform by eliminating the need...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2024-05, Vol.34 (3), p.1-6
Hauptverfasser: Creusot, Christophe, Morandi, Antonio, Mimmi, Francesco, Guerra, Emiliano, Bertinato, Alberto, Steckler, Pierre-Baptiste, Ribani, Pier Luigi, Fabbri, Massimo, Bocchi, Marco, Musso, Andrea, Angeli, Giuliano, Brasiliano, Diego
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 3
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 34
creator Creusot, Christophe
Morandi, Antonio
Mimmi, Francesco
Guerra, Emiliano
Bertinato, Alberto
Steckler, Pierre-Baptiste
Ribani, Pier Luigi
Fabbri, Massimo
Bocchi, Marco
Musso, Andrea
Angeli, Giuliano
Brasiliano, Diego
description The European project SCARLET aims to study and realize a demonstrator of a MVDC (Medium Voltage Direct Current) high-power superconducting cable. This device might be employed to connect offshore wind farms with land, expecting to significantly simplify the offshore platform by eliminating the need for its conversion function. For this purpose, windmill conversion chain must be modified to directly produce the MVDC export voltage. In this scenario, this paper presents the case of a 1GW offshore windmill superconducting link and outlines the design consideration for a 1 GW onshore converter. For this cable, a protection strategy that combines DC circuit breakers with a Resistive Superconducting Fault Current Limiter is proposed. Moreover, this works demonstrates how a superconducting cable can be modelled as an electrical circuit to be integrated into a network simulation tool, enabling the investigation of various fault scenarios and protection strategies. Finally, a specific result is discussed to exemplify how the proposed approach can benefit the design of both the electrical network and the superconducting cable itself.
doi_str_mv 10.1109/TASC.2024.3370118
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TASC_2024_3370118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10461329</ieee_id><sourcerecordid>2969044022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-a238b51dcb3b00e69a82de762c00190eb16aabc947f40098da7c46859053ef6c3</originalsourceid><addsrcrecordid>eNpNkMtqwzAQRUVpoWnaDyh0Yejaqd6WlsH0EUhoIe5ayPIkODhSKsuL_n1tkkVXMwP3ztw5CD0SvCAE65dquS0XFFO-YKzAhKgrNCNCqJwKIq7HHguSK0rZLbrr-wPGhCsuZuhrO5wguuCbwaXW77PS1h1km9BA103zyqeQvXbgUgx5trF7D6l1WRWt71vwKdu2x6GzqQ0-q0Lo7tHNznY9PFzqHH2_vVblR77-fF-Vy3XuKJcpt5SpWpDG1azGGKS2ijZQSOrGaBpDTaS1tdO82HGMtWps4bhUQmPBYCcdm6Pn895TDD8D9MkcwhD9eNJQLTXmHI_fzhE5q1wMfR9hZ06xPdr4awg2EzgzgTMTOHMBN3qezp4WAP7puSSMavYHd9Bpbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2969044022</pqid></control><display><type>article</type><title>Superconducting Cable Modelling Into Electro- Magnetic Transient Simulation Tool</title><source>IEEE Xplore</source><creator>Creusot, Christophe ; Morandi, Antonio ; Mimmi, Francesco ; Guerra, Emiliano ; Bertinato, Alberto ; Steckler, Pierre-Baptiste ; Ribani, Pier Luigi ; Fabbri, Massimo ; Bocchi, Marco ; Musso, Andrea ; Angeli, Giuliano ; Brasiliano, Diego</creator><creatorcontrib>Creusot, Christophe ; Morandi, Antonio ; Mimmi, Francesco ; Guerra, Emiliano ; Bertinato, Alberto ; Steckler, Pierre-Baptiste ; Ribani, Pier Luigi ; Fabbri, Massimo ; Bocchi, Marco ; Musso, Andrea ; Angeli, Giuliano ; Brasiliano, Diego</creatorcontrib><description>The European project SCARLET aims to study and realize a demonstrator of a MVDC (Medium Voltage Direct Current) high-power superconducting cable. This device might be employed to connect offshore wind farms with land, expecting to significantly simplify the offshore platform by eliminating the need for its conversion function. For this purpose, windmill conversion chain must be modified to directly produce the MVDC export voltage. In this scenario, this paper presents the case of a 1GW offshore windmill superconducting link and outlines the design consideration for a 1 GW onshore converter. For this cable, a protection strategy that combines DC circuit breakers with a Resistive Superconducting Fault Current Limiter is proposed. Moreover, this works demonstrates how a superconducting cable can be modelled as an electrical circuit to be integrated into a network simulation tool, enabling the investigation of various fault scenarios and protection strategies. Finally, a specific result is discussed to exemplify how the proposed approach can benefit the design of both the electrical network and the superconducting cable itself.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2024.3370118</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cables ; Circuit breakers ; Circuit faults ; Conductors ; converter ; Current limiters ; Direct current ; Electric potential ; Electrical networks ; High-temperature superconductors ; Inductance ; Integrated circuit modeling ; modelling ; MVDC ; Offshore ; Offshore energy sources ; Offshore platforms ; Power cables ; protection ; Superconducting cables ; Superconductivity ; Transient analysis ; Voltage ; Wind power ; Windmills</subject><ispartof>IEEE transactions on applied superconductivity, 2024-05, Vol.34 (3), p.1-6</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-a238b51dcb3b00e69a82de762c00190eb16aabc947f40098da7c46859053ef6c3</cites><orcidid>0009-0007-3967-8870 ; 0000-0002-2321-3856 ; 0000-0003-4695-2974 ; 0000-0003-4374-7756 ; 0000-0001-9178-8371 ; 0009-0007-0346-4096 ; 0000-0002-1845-4006 ; 0009-0007-2370-8959 ; 0009-0004-7842-0715 ; 0000-0001-7075-5247</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10461329$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10461329$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Creusot, Christophe</creatorcontrib><creatorcontrib>Morandi, Antonio</creatorcontrib><creatorcontrib>Mimmi, Francesco</creatorcontrib><creatorcontrib>Guerra, Emiliano</creatorcontrib><creatorcontrib>Bertinato, Alberto</creatorcontrib><creatorcontrib>Steckler, Pierre-Baptiste</creatorcontrib><creatorcontrib>Ribani, Pier Luigi</creatorcontrib><creatorcontrib>Fabbri, Massimo</creatorcontrib><creatorcontrib>Bocchi, Marco</creatorcontrib><creatorcontrib>Musso, Andrea</creatorcontrib><creatorcontrib>Angeli, Giuliano</creatorcontrib><creatorcontrib>Brasiliano, Diego</creatorcontrib><title>Superconducting Cable Modelling Into Electro- Magnetic Transient Simulation Tool</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The European project SCARLET aims to study and realize a demonstrator of a MVDC (Medium Voltage Direct Current) high-power superconducting cable. This device might be employed to connect offshore wind farms with land, expecting to significantly simplify the offshore platform by eliminating the need for its conversion function. For this purpose, windmill conversion chain must be modified to directly produce the MVDC export voltage. In this scenario, this paper presents the case of a 1GW offshore windmill superconducting link and outlines the design consideration for a 1 GW onshore converter. For this cable, a protection strategy that combines DC circuit breakers with a Resistive Superconducting Fault Current Limiter is proposed. Moreover, this works demonstrates how a superconducting cable can be modelled as an electrical circuit to be integrated into a network simulation tool, enabling the investigation of various fault scenarios and protection strategies. Finally, a specific result is discussed to exemplify how the proposed approach can benefit the design of both the electrical network and the superconducting cable itself.</description><subject>Cables</subject><subject>Circuit breakers</subject><subject>Circuit faults</subject><subject>Conductors</subject><subject>converter</subject><subject>Current limiters</subject><subject>Direct current</subject><subject>Electric potential</subject><subject>Electrical networks</subject><subject>High-temperature superconductors</subject><subject>Inductance</subject><subject>Integrated circuit modeling</subject><subject>modelling</subject><subject>MVDC</subject><subject>Offshore</subject><subject>Offshore energy sources</subject><subject>Offshore platforms</subject><subject>Power cables</subject><subject>protection</subject><subject>Superconducting cables</subject><subject>Superconductivity</subject><subject>Transient analysis</subject><subject>Voltage</subject><subject>Wind power</subject><subject>Windmills</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtqwzAQRUVpoWnaDyh0Yejaqd6WlsH0EUhoIe5ayPIkODhSKsuL_n1tkkVXMwP3ztw5CD0SvCAE65dquS0XFFO-YKzAhKgrNCNCqJwKIq7HHguSK0rZLbrr-wPGhCsuZuhrO5wguuCbwaXW77PS1h1km9BA103zyqeQvXbgUgx5trF7D6l1WRWt71vwKdu2x6GzqQ0-q0Lo7tHNznY9PFzqHH2_vVblR77-fF-Vy3XuKJcpt5SpWpDG1azGGKS2ijZQSOrGaBpDTaS1tdO82HGMtWps4bhUQmPBYCcdm6Pn895TDD8D9MkcwhD9eNJQLTXmHI_fzhE5q1wMfR9hZ06xPdr4awg2EzgzgTMTOHMBN3qezp4WAP7puSSMavYHd9Bpbg</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Creusot, Christophe</creator><creator>Morandi, Antonio</creator><creator>Mimmi, Francesco</creator><creator>Guerra, Emiliano</creator><creator>Bertinato, Alberto</creator><creator>Steckler, Pierre-Baptiste</creator><creator>Ribani, Pier Luigi</creator><creator>Fabbri, Massimo</creator><creator>Bocchi, Marco</creator><creator>Musso, Andrea</creator><creator>Angeli, Giuliano</creator><creator>Brasiliano, Diego</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0007-3967-8870</orcidid><orcidid>https://orcid.org/0000-0002-2321-3856</orcidid><orcidid>https://orcid.org/0000-0003-4695-2974</orcidid><orcidid>https://orcid.org/0000-0003-4374-7756</orcidid><orcidid>https://orcid.org/0000-0001-9178-8371</orcidid><orcidid>https://orcid.org/0009-0007-0346-4096</orcidid><orcidid>https://orcid.org/0000-0002-1845-4006</orcidid><orcidid>https://orcid.org/0009-0007-2370-8959</orcidid><orcidid>https://orcid.org/0009-0004-7842-0715</orcidid><orcidid>https://orcid.org/0000-0001-7075-5247</orcidid></search><sort><creationdate>20240501</creationdate><title>Superconducting Cable Modelling Into Electro- Magnetic Transient Simulation Tool</title><author>Creusot, Christophe ; Morandi, Antonio ; Mimmi, Francesco ; Guerra, Emiliano ; Bertinato, Alberto ; Steckler, Pierre-Baptiste ; Ribani, Pier Luigi ; Fabbri, Massimo ; Bocchi, Marco ; Musso, Andrea ; Angeli, Giuliano ; Brasiliano, Diego</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-a238b51dcb3b00e69a82de762c00190eb16aabc947f40098da7c46859053ef6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cables</topic><topic>Circuit breakers</topic><topic>Circuit faults</topic><topic>Conductors</topic><topic>converter</topic><topic>Current limiters</topic><topic>Direct current</topic><topic>Electric potential</topic><topic>Electrical networks</topic><topic>High-temperature superconductors</topic><topic>Inductance</topic><topic>Integrated circuit modeling</topic><topic>modelling</topic><topic>MVDC</topic><topic>Offshore</topic><topic>Offshore energy sources</topic><topic>Offshore platforms</topic><topic>Power cables</topic><topic>protection</topic><topic>Superconducting cables</topic><topic>Superconductivity</topic><topic>Transient analysis</topic><topic>Voltage</topic><topic>Wind power</topic><topic>Windmills</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Creusot, Christophe</creatorcontrib><creatorcontrib>Morandi, Antonio</creatorcontrib><creatorcontrib>Mimmi, Francesco</creatorcontrib><creatorcontrib>Guerra, Emiliano</creatorcontrib><creatorcontrib>Bertinato, Alberto</creatorcontrib><creatorcontrib>Steckler, Pierre-Baptiste</creatorcontrib><creatorcontrib>Ribani, Pier Luigi</creatorcontrib><creatorcontrib>Fabbri, Massimo</creatorcontrib><creatorcontrib>Bocchi, Marco</creatorcontrib><creatorcontrib>Musso, Andrea</creatorcontrib><creatorcontrib>Angeli, Giuliano</creatorcontrib><creatorcontrib>Brasiliano, Diego</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Creusot, Christophe</au><au>Morandi, Antonio</au><au>Mimmi, Francesco</au><au>Guerra, Emiliano</au><au>Bertinato, Alberto</au><au>Steckler, Pierre-Baptiste</au><au>Ribani, Pier Luigi</au><au>Fabbri, Massimo</au><au>Bocchi, Marco</au><au>Musso, Andrea</au><au>Angeli, Giuliano</au><au>Brasiliano, Diego</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superconducting Cable Modelling Into Electro- Magnetic Transient Simulation Tool</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>34</volume><issue>3</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The European project SCARLET aims to study and realize a demonstrator of a MVDC (Medium Voltage Direct Current) high-power superconducting cable. This device might be employed to connect offshore wind farms with land, expecting to significantly simplify the offshore platform by eliminating the need for its conversion function. For this purpose, windmill conversion chain must be modified to directly produce the MVDC export voltage. In this scenario, this paper presents the case of a 1GW offshore windmill superconducting link and outlines the design consideration for a 1 GW onshore converter. For this cable, a protection strategy that combines DC circuit breakers with a Resistive Superconducting Fault Current Limiter is proposed. Moreover, this works demonstrates how a superconducting cable can be modelled as an electrical circuit to be integrated into a network simulation tool, enabling the investigation of various fault scenarios and protection strategies. Finally, a specific result is discussed to exemplify how the proposed approach can benefit the design of both the electrical network and the superconducting cable itself.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2024.3370118</doi><tpages>6</tpages><orcidid>https://orcid.org/0009-0007-3967-8870</orcidid><orcidid>https://orcid.org/0000-0002-2321-3856</orcidid><orcidid>https://orcid.org/0000-0003-4695-2974</orcidid><orcidid>https://orcid.org/0000-0003-4374-7756</orcidid><orcidid>https://orcid.org/0000-0001-9178-8371</orcidid><orcidid>https://orcid.org/0009-0007-0346-4096</orcidid><orcidid>https://orcid.org/0000-0002-1845-4006</orcidid><orcidid>https://orcid.org/0009-0007-2370-8959</orcidid><orcidid>https://orcid.org/0009-0004-7842-0715</orcidid><orcidid>https://orcid.org/0000-0001-7075-5247</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2024-05, Vol.34 (3), p.1-6
issn 1051-8223
1558-2515
language eng
recordid cdi_crossref_primary_10_1109_TASC_2024_3370118
source IEEE Xplore
subjects Cables
Circuit breakers
Circuit faults
Conductors
converter
Current limiters
Direct current
Electric potential
Electrical networks
High-temperature superconductors
Inductance
Integrated circuit modeling
modelling
MVDC
Offshore
Offshore energy sources
Offshore platforms
Power cables
protection
Superconducting cables
Superconductivity
Transient analysis
Voltage
Wind power
Windmills
title Superconducting Cable Modelling Into Electro- Magnetic Transient Simulation Tool
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T22%3A25%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superconducting%20Cable%20Modelling%20Into%20Electro-%20Magnetic%20Transient%20Simulation%20Tool&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Creusot,%20Christophe&rft.date=2024-05-01&rft.volume=34&rft.issue=3&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2024.3370118&rft_dat=%3Cproquest_RIE%3E2969044022%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2969044022&rft_id=info:pmid/&rft_ieee_id=10461329&rfr_iscdi=true