Superconducting Cable Modelling Into Electro- Magnetic Transient Simulation Tool
The European project SCARLET aims to study and realize a demonstrator of a MVDC (Medium Voltage Direct Current) high-power superconducting cable. This device might be employed to connect offshore wind farms with land, expecting to significantly simplify the offshore platform by eliminating the need...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2024-05, Vol.34 (3), p.1-6 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 34 |
creator | Creusot, Christophe Morandi, Antonio Mimmi, Francesco Guerra, Emiliano Bertinato, Alberto Steckler, Pierre-Baptiste Ribani, Pier Luigi Fabbri, Massimo Bocchi, Marco Musso, Andrea Angeli, Giuliano Brasiliano, Diego |
description | The European project SCARLET aims to study and realize a demonstrator of a MVDC (Medium Voltage Direct Current) high-power superconducting cable. This device might be employed to connect offshore wind farms with land, expecting to significantly simplify the offshore platform by eliminating the need for its conversion function. For this purpose, windmill conversion chain must be modified to directly produce the MVDC export voltage. In this scenario, this paper presents the case of a 1GW offshore windmill superconducting link and outlines the design consideration for a 1 GW onshore converter. For this cable, a protection strategy that combines DC circuit breakers with a Resistive Superconducting Fault Current Limiter is proposed. Moreover, this works demonstrates how a superconducting cable can be modelled as an electrical circuit to be integrated into a network simulation tool, enabling the investigation of various fault scenarios and protection strategies. Finally, a specific result is discussed to exemplify how the proposed approach can benefit the design of both the electrical network and the superconducting cable itself. |
doi_str_mv | 10.1109/TASC.2024.3370118 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TASC_2024_3370118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10461329</ieee_id><sourcerecordid>2969044022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-a238b51dcb3b00e69a82de762c00190eb16aabc947f40098da7c46859053ef6c3</originalsourceid><addsrcrecordid>eNpNkMtqwzAQRUVpoWnaDyh0Yejaqd6WlsH0EUhoIe5ayPIkODhSKsuL_n1tkkVXMwP3ztw5CD0SvCAE65dquS0XFFO-YKzAhKgrNCNCqJwKIq7HHguSK0rZLbrr-wPGhCsuZuhrO5wguuCbwaXW77PS1h1km9BA103zyqeQvXbgUgx5trF7D6l1WRWt71vwKdu2x6GzqQ0-q0Lo7tHNznY9PFzqHH2_vVblR77-fF-Vy3XuKJcpt5SpWpDG1azGGKS2ijZQSOrGaBpDTaS1tdO82HGMtWps4bhUQmPBYCcdm6Pn895TDD8D9MkcwhD9eNJQLTXmHI_fzhE5q1wMfR9hZ06xPdr4awg2EzgzgTMTOHMBN3qezp4WAP7puSSMavYHd9Bpbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2969044022</pqid></control><display><type>article</type><title>Superconducting Cable Modelling Into Electro- Magnetic Transient Simulation Tool</title><source>IEEE Xplore</source><creator>Creusot, Christophe ; Morandi, Antonio ; Mimmi, Francesco ; Guerra, Emiliano ; Bertinato, Alberto ; Steckler, Pierre-Baptiste ; Ribani, Pier Luigi ; Fabbri, Massimo ; Bocchi, Marco ; Musso, Andrea ; Angeli, Giuliano ; Brasiliano, Diego</creator><creatorcontrib>Creusot, Christophe ; Morandi, Antonio ; Mimmi, Francesco ; Guerra, Emiliano ; Bertinato, Alberto ; Steckler, Pierre-Baptiste ; Ribani, Pier Luigi ; Fabbri, Massimo ; Bocchi, Marco ; Musso, Andrea ; Angeli, Giuliano ; Brasiliano, Diego</creatorcontrib><description>The European project SCARLET aims to study and realize a demonstrator of a MVDC (Medium Voltage Direct Current) high-power superconducting cable. This device might be employed to connect offshore wind farms with land, expecting to significantly simplify the offshore platform by eliminating the need for its conversion function. For this purpose, windmill conversion chain must be modified to directly produce the MVDC export voltage. In this scenario, this paper presents the case of a 1GW offshore windmill superconducting link and outlines the design consideration for a 1 GW onshore converter. For this cable, a protection strategy that combines DC circuit breakers with a Resistive Superconducting Fault Current Limiter is proposed. Moreover, this works demonstrates how a superconducting cable can be modelled as an electrical circuit to be integrated into a network simulation tool, enabling the investigation of various fault scenarios and protection strategies. Finally, a specific result is discussed to exemplify how the proposed approach can benefit the design of both the electrical network and the superconducting cable itself.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2024.3370118</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cables ; Circuit breakers ; Circuit faults ; Conductors ; converter ; Current limiters ; Direct current ; Electric potential ; Electrical networks ; High-temperature superconductors ; Inductance ; Integrated circuit modeling ; modelling ; MVDC ; Offshore ; Offshore energy sources ; Offshore platforms ; Power cables ; protection ; Superconducting cables ; Superconductivity ; Transient analysis ; Voltage ; Wind power ; Windmills</subject><ispartof>IEEE transactions on applied superconductivity, 2024-05, Vol.34 (3), p.1-6</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-a238b51dcb3b00e69a82de762c00190eb16aabc947f40098da7c46859053ef6c3</cites><orcidid>0009-0007-3967-8870 ; 0000-0002-2321-3856 ; 0000-0003-4695-2974 ; 0000-0003-4374-7756 ; 0000-0001-9178-8371 ; 0009-0007-0346-4096 ; 0000-0002-1845-4006 ; 0009-0007-2370-8959 ; 0009-0004-7842-0715 ; 0000-0001-7075-5247</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10461329$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10461329$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Creusot, Christophe</creatorcontrib><creatorcontrib>Morandi, Antonio</creatorcontrib><creatorcontrib>Mimmi, Francesco</creatorcontrib><creatorcontrib>Guerra, Emiliano</creatorcontrib><creatorcontrib>Bertinato, Alberto</creatorcontrib><creatorcontrib>Steckler, Pierre-Baptiste</creatorcontrib><creatorcontrib>Ribani, Pier Luigi</creatorcontrib><creatorcontrib>Fabbri, Massimo</creatorcontrib><creatorcontrib>Bocchi, Marco</creatorcontrib><creatorcontrib>Musso, Andrea</creatorcontrib><creatorcontrib>Angeli, Giuliano</creatorcontrib><creatorcontrib>Brasiliano, Diego</creatorcontrib><title>Superconducting Cable Modelling Into Electro- Magnetic Transient Simulation Tool</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The European project SCARLET aims to study and realize a demonstrator of a MVDC (Medium Voltage Direct Current) high-power superconducting cable. This device might be employed to connect offshore wind farms with land, expecting to significantly simplify the offshore platform by eliminating the need for its conversion function. For this purpose, windmill conversion chain must be modified to directly produce the MVDC export voltage. In this scenario, this paper presents the case of a 1GW offshore windmill superconducting link and outlines the design consideration for a 1 GW onshore converter. For this cable, a protection strategy that combines DC circuit breakers with a Resistive Superconducting Fault Current Limiter is proposed. Moreover, this works demonstrates how a superconducting cable can be modelled as an electrical circuit to be integrated into a network simulation tool, enabling the investigation of various fault scenarios and protection strategies. Finally, a specific result is discussed to exemplify how the proposed approach can benefit the design of both the electrical network and the superconducting cable itself.</description><subject>Cables</subject><subject>Circuit breakers</subject><subject>Circuit faults</subject><subject>Conductors</subject><subject>converter</subject><subject>Current limiters</subject><subject>Direct current</subject><subject>Electric potential</subject><subject>Electrical networks</subject><subject>High-temperature superconductors</subject><subject>Inductance</subject><subject>Integrated circuit modeling</subject><subject>modelling</subject><subject>MVDC</subject><subject>Offshore</subject><subject>Offshore energy sources</subject><subject>Offshore platforms</subject><subject>Power cables</subject><subject>protection</subject><subject>Superconducting cables</subject><subject>Superconductivity</subject><subject>Transient analysis</subject><subject>Voltage</subject><subject>Wind power</subject><subject>Windmills</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtqwzAQRUVpoWnaDyh0Yejaqd6WlsH0EUhoIe5ayPIkODhSKsuL_n1tkkVXMwP3ztw5CD0SvCAE65dquS0XFFO-YKzAhKgrNCNCqJwKIq7HHguSK0rZLbrr-wPGhCsuZuhrO5wguuCbwaXW77PS1h1km9BA103zyqeQvXbgUgx5trF7D6l1WRWt71vwKdu2x6GzqQ0-q0Lo7tHNznY9PFzqHH2_vVblR77-fF-Vy3XuKJcpt5SpWpDG1azGGKS2ijZQSOrGaBpDTaS1tdO82HGMtWps4bhUQmPBYCcdm6Pn895TDD8D9MkcwhD9eNJQLTXmHI_fzhE5q1wMfR9hZ06xPdr4awg2EzgzgTMTOHMBN3qezp4WAP7puSSMavYHd9Bpbg</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Creusot, Christophe</creator><creator>Morandi, Antonio</creator><creator>Mimmi, Francesco</creator><creator>Guerra, Emiliano</creator><creator>Bertinato, Alberto</creator><creator>Steckler, Pierre-Baptiste</creator><creator>Ribani, Pier Luigi</creator><creator>Fabbri, Massimo</creator><creator>Bocchi, Marco</creator><creator>Musso, Andrea</creator><creator>Angeli, Giuliano</creator><creator>Brasiliano, Diego</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0007-3967-8870</orcidid><orcidid>https://orcid.org/0000-0002-2321-3856</orcidid><orcidid>https://orcid.org/0000-0003-4695-2974</orcidid><orcidid>https://orcid.org/0000-0003-4374-7756</orcidid><orcidid>https://orcid.org/0000-0001-9178-8371</orcidid><orcidid>https://orcid.org/0009-0007-0346-4096</orcidid><orcidid>https://orcid.org/0000-0002-1845-4006</orcidid><orcidid>https://orcid.org/0009-0007-2370-8959</orcidid><orcidid>https://orcid.org/0009-0004-7842-0715</orcidid><orcidid>https://orcid.org/0000-0001-7075-5247</orcidid></search><sort><creationdate>20240501</creationdate><title>Superconducting Cable Modelling Into Electro- Magnetic Transient Simulation Tool</title><author>Creusot, Christophe ; Morandi, Antonio ; Mimmi, Francesco ; Guerra, Emiliano ; Bertinato, Alberto ; Steckler, Pierre-Baptiste ; Ribani, Pier Luigi ; Fabbri, Massimo ; Bocchi, Marco ; Musso, Andrea ; Angeli, Giuliano ; Brasiliano, Diego</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-a238b51dcb3b00e69a82de762c00190eb16aabc947f40098da7c46859053ef6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cables</topic><topic>Circuit breakers</topic><topic>Circuit faults</topic><topic>Conductors</topic><topic>converter</topic><topic>Current limiters</topic><topic>Direct current</topic><topic>Electric potential</topic><topic>Electrical networks</topic><topic>High-temperature superconductors</topic><topic>Inductance</topic><topic>Integrated circuit modeling</topic><topic>modelling</topic><topic>MVDC</topic><topic>Offshore</topic><topic>Offshore energy sources</topic><topic>Offshore platforms</topic><topic>Power cables</topic><topic>protection</topic><topic>Superconducting cables</topic><topic>Superconductivity</topic><topic>Transient analysis</topic><topic>Voltage</topic><topic>Wind power</topic><topic>Windmills</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Creusot, Christophe</creatorcontrib><creatorcontrib>Morandi, Antonio</creatorcontrib><creatorcontrib>Mimmi, Francesco</creatorcontrib><creatorcontrib>Guerra, Emiliano</creatorcontrib><creatorcontrib>Bertinato, Alberto</creatorcontrib><creatorcontrib>Steckler, Pierre-Baptiste</creatorcontrib><creatorcontrib>Ribani, Pier Luigi</creatorcontrib><creatorcontrib>Fabbri, Massimo</creatorcontrib><creatorcontrib>Bocchi, Marco</creatorcontrib><creatorcontrib>Musso, Andrea</creatorcontrib><creatorcontrib>Angeli, Giuliano</creatorcontrib><creatorcontrib>Brasiliano, Diego</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Creusot, Christophe</au><au>Morandi, Antonio</au><au>Mimmi, Francesco</au><au>Guerra, Emiliano</au><au>Bertinato, Alberto</au><au>Steckler, Pierre-Baptiste</au><au>Ribani, Pier Luigi</au><au>Fabbri, Massimo</au><au>Bocchi, Marco</au><au>Musso, Andrea</au><au>Angeli, Giuliano</au><au>Brasiliano, Diego</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superconducting Cable Modelling Into Electro- Magnetic Transient Simulation Tool</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>34</volume><issue>3</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The European project SCARLET aims to study and realize a demonstrator of a MVDC (Medium Voltage Direct Current) high-power superconducting cable. This device might be employed to connect offshore wind farms with land, expecting to significantly simplify the offshore platform by eliminating the need for its conversion function. For this purpose, windmill conversion chain must be modified to directly produce the MVDC export voltage. In this scenario, this paper presents the case of a 1GW offshore windmill superconducting link and outlines the design consideration for a 1 GW onshore converter. For this cable, a protection strategy that combines DC circuit breakers with a Resistive Superconducting Fault Current Limiter is proposed. Moreover, this works demonstrates how a superconducting cable can be modelled as an electrical circuit to be integrated into a network simulation tool, enabling the investigation of various fault scenarios and protection strategies. Finally, a specific result is discussed to exemplify how the proposed approach can benefit the design of both the electrical network and the superconducting cable itself.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2024.3370118</doi><tpages>6</tpages><orcidid>https://orcid.org/0009-0007-3967-8870</orcidid><orcidid>https://orcid.org/0000-0002-2321-3856</orcidid><orcidid>https://orcid.org/0000-0003-4695-2974</orcidid><orcidid>https://orcid.org/0000-0003-4374-7756</orcidid><orcidid>https://orcid.org/0000-0001-9178-8371</orcidid><orcidid>https://orcid.org/0009-0007-0346-4096</orcidid><orcidid>https://orcid.org/0000-0002-1845-4006</orcidid><orcidid>https://orcid.org/0009-0007-2370-8959</orcidid><orcidid>https://orcid.org/0009-0004-7842-0715</orcidid><orcidid>https://orcid.org/0000-0001-7075-5247</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2024-05, Vol.34 (3), p.1-6 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TASC_2024_3370118 |
source | IEEE Xplore |
subjects | Cables Circuit breakers Circuit faults Conductors converter Current limiters Direct current Electric potential Electrical networks High-temperature superconductors Inductance Integrated circuit modeling modelling MVDC Offshore Offshore energy sources Offshore platforms Power cables protection Superconducting cables Superconductivity Transient analysis Voltage Wind power Windmills |
title | Superconducting Cable Modelling Into Electro- Magnetic Transient Simulation Tool |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T22%3A25%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superconducting%20Cable%20Modelling%20Into%20Electro-%20Magnetic%20Transient%20Simulation%20Tool&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Creusot,%20Christophe&rft.date=2024-05-01&rft.volume=34&rft.issue=3&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2024.3370118&rft_dat=%3Cproquest_RIE%3E2969044022%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2969044022&rft_id=info:pmid/&rft_ieee_id=10461329&rfr_iscdi=true |