Heat Transfer Analysis of Superconducting Magnetically Levitation Rotor Startup Process
Superconducting magnetic levitation rotors have good application prospects in fields such as gravimeters, accelerometers, and inertial instruments. Aiming at the little research on the heat transfer characteristics of superconducting magnetic levitation rotor, this paper introduces the structure of...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2023-11, Vol.33 (8), p.1-6 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | 8 |
container_start_page | 1 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 33 |
creator | Cui, Xu Wang, Qiuliang Hu, Xinning Cui, Chunyan Zhang, Yuan Niu, Feifei Huang, Xing |
description | Superconducting magnetic levitation rotors have good application prospects in fields such as gravimeters, accelerometers, and inertial instruments. Aiming at the little research on the heat transfer characteristics of superconducting magnetic levitation rotor, this paper introduces the structure of the superconducting magnetic levitation rotor and the heat conduction model. Then, the temperature relationship of the rotor at steady state is obtained and the surface radiation distribution of the rotor during temperature rise is calculated. The results show that the temperature accuracy of superconducting magnetic levitation rotor is critical to the drift accuracy. The drift caused by temperature change mainly depends on the accuracy of mechanical components and the stability of temperature control system, which can provide some reference for the safe operation of the rotor. |
doi_str_mv | 10.1109/TASC.2023.3300019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TASC_2023_3300019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10197547</ieee_id><sourcerecordid>2853019176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-4c55ee07a1b6023c2c8cb77221ba370ce3d7ac902fc37954186b7bb423299dd23</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPqfmazx1LUChXFVjwum82kpMRs3N0I_femtAdPM4fnfZl5ELqlZEYp0Q-b-XoxY4TxGeeEEKrP0IRKWWRMUnk-7kTSrGCMX6KrGHcjIQohJ-hrCTbhTbBdrCHgeWfbfWwi9jVeDz0E57tqcKnptvjVbjtIjbNtu8cr-G2STY3v8IdPPuB1siENPX4P3kGM1-iitm2Em9Ocos-nx81ima3enl8W81XmmMhTJpyUAERZWubj8Y65wpVKMUZLyxVxwCtlnSasdlxpKWiRl6osBeNM66pifIruj7198D8DxGR2fgjjF9GwQvJRBFX5SNEj5YKPMUBt-tB827A3lJiDP3PwZw7-zMnfmLk7ZhoA-MdTraRQ_A9jL2x0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2853019176</pqid></control><display><type>article</type><title>Heat Transfer Analysis of Superconducting Magnetically Levitation Rotor Startup Process</title><source>IEEE Electronic Library (IEL)</source><creator>Cui, Xu ; Wang, Qiuliang ; Hu, Xinning ; Cui, Chunyan ; Zhang, Yuan ; Niu, Feifei ; Huang, Xing</creator><creatorcontrib>Cui, Xu ; Wang, Qiuliang ; Hu, Xinning ; Cui, Chunyan ; Zhang, Yuan ; Niu, Feifei ; Huang, Xing</creatorcontrib><description>Superconducting magnetic levitation rotors have good application prospects in fields such as gravimeters, accelerometers, and inertial instruments. Aiming at the little research on the heat transfer characteristics of superconducting magnetic levitation rotor, this paper introduces the structure of the superconducting magnetic levitation rotor and the heat conduction model. Then, the temperature relationship of the rotor at steady state is obtained and the surface radiation distribution of the rotor during temperature rise is calculated. The results show that the temperature accuracy of superconducting magnetic levitation rotor is critical to the drift accuracy. The drift caused by temperature change mainly depends on the accuracy of mechanical components and the stability of temperature control system, which can provide some reference for the safe operation of the rotor.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2023.3300019</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accelerometers ; Conduction heating ; Conduction model ; Conductive heat transfer ; Drift ; Heat transfer ; Heat transfer analysis ; Heating systems ; Magnetic levitation ; Mathematical models ; Mechanical components ; Niobium ; Radiation distribution ; Rotors ; superconducting magnetic levitation rotor ; Superconducting magnets ; Superconductivity ; temperature conduction model ; Temperature control ; Temperature effects ; thermal design principles</subject><ispartof>IEEE transactions on applied superconductivity, 2023-11, Vol.33 (8), p.1-6</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-4c55ee07a1b6023c2c8cb77221ba370ce3d7ac902fc37954186b7bb423299dd23</cites><orcidid>0000-0002-5912-4003 ; 0000-0002-3073-8773 ; 0000-0001-7401-4104 ; 0000-0001-5987-4069 ; 0000-0003-1101-9674</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10197547$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10197547$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cui, Xu</creatorcontrib><creatorcontrib>Wang, Qiuliang</creatorcontrib><creatorcontrib>Hu, Xinning</creatorcontrib><creatorcontrib>Cui, Chunyan</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><creatorcontrib>Niu, Feifei</creatorcontrib><creatorcontrib>Huang, Xing</creatorcontrib><title>Heat Transfer Analysis of Superconducting Magnetically Levitation Rotor Startup Process</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>Superconducting magnetic levitation rotors have good application prospects in fields such as gravimeters, accelerometers, and inertial instruments. Aiming at the little research on the heat transfer characteristics of superconducting magnetic levitation rotor, this paper introduces the structure of the superconducting magnetic levitation rotor and the heat conduction model. Then, the temperature relationship of the rotor at steady state is obtained and the surface radiation distribution of the rotor during temperature rise is calculated. The results show that the temperature accuracy of superconducting magnetic levitation rotor is critical to the drift accuracy. The drift caused by temperature change mainly depends on the accuracy of mechanical components and the stability of temperature control system, which can provide some reference for the safe operation of the rotor.</description><subject>Accelerometers</subject><subject>Conduction heating</subject><subject>Conduction model</subject><subject>Conductive heat transfer</subject><subject>Drift</subject><subject>Heat transfer</subject><subject>Heat transfer analysis</subject><subject>Heating systems</subject><subject>Magnetic levitation</subject><subject>Mathematical models</subject><subject>Mechanical components</subject><subject>Niobium</subject><subject>Radiation distribution</subject><subject>Rotors</subject><subject>superconducting magnetic levitation rotor</subject><subject>Superconducting magnets</subject><subject>Superconductivity</subject><subject>temperature conduction model</subject><subject>Temperature control</subject><subject>Temperature effects</subject><subject>thermal design principles</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPqfmazx1LUChXFVjwum82kpMRs3N0I_femtAdPM4fnfZl5ELqlZEYp0Q-b-XoxY4TxGeeEEKrP0IRKWWRMUnk-7kTSrGCMX6KrGHcjIQohJ-hrCTbhTbBdrCHgeWfbfWwi9jVeDz0E57tqcKnptvjVbjtIjbNtu8cr-G2STY3v8IdPPuB1siENPX4P3kGM1-iitm2Em9Ocos-nx81ima3enl8W81XmmMhTJpyUAERZWubj8Y65wpVKMUZLyxVxwCtlnSasdlxpKWiRl6osBeNM66pifIruj7198D8DxGR2fgjjF9GwQvJRBFX5SNEj5YKPMUBt-tB827A3lJiDP3PwZw7-zMnfmLk7ZhoA-MdTraRQ_A9jL2x0</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Cui, Xu</creator><creator>Wang, Qiuliang</creator><creator>Hu, Xinning</creator><creator>Cui, Chunyan</creator><creator>Zhang, Yuan</creator><creator>Niu, Feifei</creator><creator>Huang, Xing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5912-4003</orcidid><orcidid>https://orcid.org/0000-0002-3073-8773</orcidid><orcidid>https://orcid.org/0000-0001-7401-4104</orcidid><orcidid>https://orcid.org/0000-0001-5987-4069</orcidid><orcidid>https://orcid.org/0000-0003-1101-9674</orcidid></search><sort><creationdate>20231101</creationdate><title>Heat Transfer Analysis of Superconducting Magnetically Levitation Rotor Startup Process</title><author>Cui, Xu ; Wang, Qiuliang ; Hu, Xinning ; Cui, Chunyan ; Zhang, Yuan ; Niu, Feifei ; Huang, Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-4c55ee07a1b6023c2c8cb77221ba370ce3d7ac902fc37954186b7bb423299dd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accelerometers</topic><topic>Conduction heating</topic><topic>Conduction model</topic><topic>Conductive heat transfer</topic><topic>Drift</topic><topic>Heat transfer</topic><topic>Heat transfer analysis</topic><topic>Heating systems</topic><topic>Magnetic levitation</topic><topic>Mathematical models</topic><topic>Mechanical components</topic><topic>Niobium</topic><topic>Radiation distribution</topic><topic>Rotors</topic><topic>superconducting magnetic levitation rotor</topic><topic>Superconducting magnets</topic><topic>Superconductivity</topic><topic>temperature conduction model</topic><topic>Temperature control</topic><topic>Temperature effects</topic><topic>thermal design principles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Xu</creatorcontrib><creatorcontrib>Wang, Qiuliang</creatorcontrib><creatorcontrib>Hu, Xinning</creatorcontrib><creatorcontrib>Cui, Chunyan</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><creatorcontrib>Niu, Feifei</creatorcontrib><creatorcontrib>Huang, Xing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cui, Xu</au><au>Wang, Qiuliang</au><au>Hu, Xinning</au><au>Cui, Chunyan</au><au>Zhang, Yuan</au><au>Niu, Feifei</au><au>Huang, Xing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat Transfer Analysis of Superconducting Magnetically Levitation Rotor Startup Process</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>33</volume><issue>8</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>Superconducting magnetic levitation rotors have good application prospects in fields such as gravimeters, accelerometers, and inertial instruments. Aiming at the little research on the heat transfer characteristics of superconducting magnetic levitation rotor, this paper introduces the structure of the superconducting magnetic levitation rotor and the heat conduction model. Then, the temperature relationship of the rotor at steady state is obtained and the surface radiation distribution of the rotor during temperature rise is calculated. The results show that the temperature accuracy of superconducting magnetic levitation rotor is critical to the drift accuracy. The drift caused by temperature change mainly depends on the accuracy of mechanical components and the stability of temperature control system, which can provide some reference for the safe operation of the rotor.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2023.3300019</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-5912-4003</orcidid><orcidid>https://orcid.org/0000-0002-3073-8773</orcidid><orcidid>https://orcid.org/0000-0001-7401-4104</orcidid><orcidid>https://orcid.org/0000-0001-5987-4069</orcidid><orcidid>https://orcid.org/0000-0003-1101-9674</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2023-11, Vol.33 (8), p.1-6 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TASC_2023_3300019 |
source | IEEE Electronic Library (IEL) |
subjects | Accelerometers Conduction heating Conduction model Conductive heat transfer Drift Heat transfer Heat transfer analysis Heating systems Magnetic levitation Mathematical models Mechanical components Niobium Radiation distribution Rotors superconducting magnetic levitation rotor Superconducting magnets Superconductivity temperature conduction model Temperature control Temperature effects thermal design principles |
title | Heat Transfer Analysis of Superconducting Magnetically Levitation Rotor Startup Process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T14%3A10%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20Transfer%20Analysis%20of%20Superconducting%20Magnetically%20Levitation%20Rotor%20Startup%20Process&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Cui,%20Xu&rft.date=2023-11-01&rft.volume=33&rft.issue=8&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2023.3300019&rft_dat=%3Cproquest_RIE%3E2853019176%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2853019176&rft_id=info:pmid/&rft_ieee_id=10197547&rfr_iscdi=true |