Heat Transfer Analysis of Superconducting Magnetically Levitation Rotor Startup Process

Superconducting magnetic levitation rotors have good application prospects in fields such as gravimeters, accelerometers, and inertial instruments. Aiming at the little research on the heat transfer characteristics of superconducting magnetic levitation rotor, this paper introduces the structure of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2023-11, Vol.33 (8), p.1-6
Hauptverfasser: Cui, Xu, Wang, Qiuliang, Hu, Xinning, Cui, Chunyan, Zhang, Yuan, Niu, Feifei, Huang, Xing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 8
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 33
creator Cui, Xu
Wang, Qiuliang
Hu, Xinning
Cui, Chunyan
Zhang, Yuan
Niu, Feifei
Huang, Xing
description Superconducting magnetic levitation rotors have good application prospects in fields such as gravimeters, accelerometers, and inertial instruments. Aiming at the little research on the heat transfer characteristics of superconducting magnetic levitation rotor, this paper introduces the structure of the superconducting magnetic levitation rotor and the heat conduction model. Then, the temperature relationship of the rotor at steady state is obtained and the surface radiation distribution of the rotor during temperature rise is calculated. The results show that the temperature accuracy of superconducting magnetic levitation rotor is critical to the drift accuracy. The drift caused by temperature change mainly depends on the accuracy of mechanical components and the stability of temperature control system, which can provide some reference for the safe operation of the rotor.
doi_str_mv 10.1109/TASC.2023.3300019
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TASC_2023_3300019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10197547</ieee_id><sourcerecordid>2853019176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-4c55ee07a1b6023c2c8cb77221ba370ce3d7ac902fc37954186b7bb423299dd23</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPqfmazx1LUChXFVjwum82kpMRs3N0I_femtAdPM4fnfZl5ELqlZEYp0Q-b-XoxY4TxGeeEEKrP0IRKWWRMUnk-7kTSrGCMX6KrGHcjIQohJ-hrCTbhTbBdrCHgeWfbfWwi9jVeDz0E57tqcKnptvjVbjtIjbNtu8cr-G2STY3v8IdPPuB1siENPX4P3kGM1-iitm2Em9Ocos-nx81ima3enl8W81XmmMhTJpyUAERZWubj8Y65wpVKMUZLyxVxwCtlnSasdlxpKWiRl6osBeNM66pifIruj7198D8DxGR2fgjjF9GwQvJRBFX5SNEj5YKPMUBt-tB827A3lJiDP3PwZw7-zMnfmLk7ZhoA-MdTraRQ_A9jL2x0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2853019176</pqid></control><display><type>article</type><title>Heat Transfer Analysis of Superconducting Magnetically Levitation Rotor Startup Process</title><source>IEEE Electronic Library (IEL)</source><creator>Cui, Xu ; Wang, Qiuliang ; Hu, Xinning ; Cui, Chunyan ; Zhang, Yuan ; Niu, Feifei ; Huang, Xing</creator><creatorcontrib>Cui, Xu ; Wang, Qiuliang ; Hu, Xinning ; Cui, Chunyan ; Zhang, Yuan ; Niu, Feifei ; Huang, Xing</creatorcontrib><description>Superconducting magnetic levitation rotors have good application prospects in fields such as gravimeters, accelerometers, and inertial instruments. Aiming at the little research on the heat transfer characteristics of superconducting magnetic levitation rotor, this paper introduces the structure of the superconducting magnetic levitation rotor and the heat conduction model. Then, the temperature relationship of the rotor at steady state is obtained and the surface radiation distribution of the rotor during temperature rise is calculated. The results show that the temperature accuracy of superconducting magnetic levitation rotor is critical to the drift accuracy. The drift caused by temperature change mainly depends on the accuracy of mechanical components and the stability of temperature control system, which can provide some reference for the safe operation of the rotor.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2023.3300019</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accelerometers ; Conduction heating ; Conduction model ; Conductive heat transfer ; Drift ; Heat transfer ; Heat transfer analysis ; Heating systems ; Magnetic levitation ; Mathematical models ; Mechanical components ; Niobium ; Radiation distribution ; Rotors ; superconducting magnetic levitation rotor ; Superconducting magnets ; Superconductivity ; temperature conduction model ; Temperature control ; Temperature effects ; thermal design principles</subject><ispartof>IEEE transactions on applied superconductivity, 2023-11, Vol.33 (8), p.1-6</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-4c55ee07a1b6023c2c8cb77221ba370ce3d7ac902fc37954186b7bb423299dd23</cites><orcidid>0000-0002-5912-4003 ; 0000-0002-3073-8773 ; 0000-0001-7401-4104 ; 0000-0001-5987-4069 ; 0000-0003-1101-9674</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10197547$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10197547$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cui, Xu</creatorcontrib><creatorcontrib>Wang, Qiuliang</creatorcontrib><creatorcontrib>Hu, Xinning</creatorcontrib><creatorcontrib>Cui, Chunyan</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><creatorcontrib>Niu, Feifei</creatorcontrib><creatorcontrib>Huang, Xing</creatorcontrib><title>Heat Transfer Analysis of Superconducting Magnetically Levitation Rotor Startup Process</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>Superconducting magnetic levitation rotors have good application prospects in fields such as gravimeters, accelerometers, and inertial instruments. Aiming at the little research on the heat transfer characteristics of superconducting magnetic levitation rotor, this paper introduces the structure of the superconducting magnetic levitation rotor and the heat conduction model. Then, the temperature relationship of the rotor at steady state is obtained and the surface radiation distribution of the rotor during temperature rise is calculated. The results show that the temperature accuracy of superconducting magnetic levitation rotor is critical to the drift accuracy. The drift caused by temperature change mainly depends on the accuracy of mechanical components and the stability of temperature control system, which can provide some reference for the safe operation of the rotor.</description><subject>Accelerometers</subject><subject>Conduction heating</subject><subject>Conduction model</subject><subject>Conductive heat transfer</subject><subject>Drift</subject><subject>Heat transfer</subject><subject>Heat transfer analysis</subject><subject>Heating systems</subject><subject>Magnetic levitation</subject><subject>Mathematical models</subject><subject>Mechanical components</subject><subject>Niobium</subject><subject>Radiation distribution</subject><subject>Rotors</subject><subject>superconducting magnetic levitation rotor</subject><subject>Superconducting magnets</subject><subject>Superconductivity</subject><subject>temperature conduction model</subject><subject>Temperature control</subject><subject>Temperature effects</subject><subject>thermal design principles</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPqfmazx1LUChXFVjwum82kpMRs3N0I_femtAdPM4fnfZl5ELqlZEYp0Q-b-XoxY4TxGeeEEKrP0IRKWWRMUnk-7kTSrGCMX6KrGHcjIQohJ-hrCTbhTbBdrCHgeWfbfWwi9jVeDz0E57tqcKnptvjVbjtIjbNtu8cr-G2STY3v8IdPPuB1siENPX4P3kGM1-iitm2Em9Ocos-nx81ima3enl8W81XmmMhTJpyUAERZWubj8Y65wpVKMUZLyxVxwCtlnSasdlxpKWiRl6osBeNM66pifIruj7198D8DxGR2fgjjF9GwQvJRBFX5SNEj5YKPMUBt-tB827A3lJiDP3PwZw7-zMnfmLk7ZhoA-MdTraRQ_A9jL2x0</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Cui, Xu</creator><creator>Wang, Qiuliang</creator><creator>Hu, Xinning</creator><creator>Cui, Chunyan</creator><creator>Zhang, Yuan</creator><creator>Niu, Feifei</creator><creator>Huang, Xing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5912-4003</orcidid><orcidid>https://orcid.org/0000-0002-3073-8773</orcidid><orcidid>https://orcid.org/0000-0001-7401-4104</orcidid><orcidid>https://orcid.org/0000-0001-5987-4069</orcidid><orcidid>https://orcid.org/0000-0003-1101-9674</orcidid></search><sort><creationdate>20231101</creationdate><title>Heat Transfer Analysis of Superconducting Magnetically Levitation Rotor Startup Process</title><author>Cui, Xu ; Wang, Qiuliang ; Hu, Xinning ; Cui, Chunyan ; Zhang, Yuan ; Niu, Feifei ; Huang, Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-4c55ee07a1b6023c2c8cb77221ba370ce3d7ac902fc37954186b7bb423299dd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accelerometers</topic><topic>Conduction heating</topic><topic>Conduction model</topic><topic>Conductive heat transfer</topic><topic>Drift</topic><topic>Heat transfer</topic><topic>Heat transfer analysis</topic><topic>Heating systems</topic><topic>Magnetic levitation</topic><topic>Mathematical models</topic><topic>Mechanical components</topic><topic>Niobium</topic><topic>Radiation distribution</topic><topic>Rotors</topic><topic>superconducting magnetic levitation rotor</topic><topic>Superconducting magnets</topic><topic>Superconductivity</topic><topic>temperature conduction model</topic><topic>Temperature control</topic><topic>Temperature effects</topic><topic>thermal design principles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Xu</creatorcontrib><creatorcontrib>Wang, Qiuliang</creatorcontrib><creatorcontrib>Hu, Xinning</creatorcontrib><creatorcontrib>Cui, Chunyan</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><creatorcontrib>Niu, Feifei</creatorcontrib><creatorcontrib>Huang, Xing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cui, Xu</au><au>Wang, Qiuliang</au><au>Hu, Xinning</au><au>Cui, Chunyan</au><au>Zhang, Yuan</au><au>Niu, Feifei</au><au>Huang, Xing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat Transfer Analysis of Superconducting Magnetically Levitation Rotor Startup Process</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>33</volume><issue>8</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>Superconducting magnetic levitation rotors have good application prospects in fields such as gravimeters, accelerometers, and inertial instruments. Aiming at the little research on the heat transfer characteristics of superconducting magnetic levitation rotor, this paper introduces the structure of the superconducting magnetic levitation rotor and the heat conduction model. Then, the temperature relationship of the rotor at steady state is obtained and the surface radiation distribution of the rotor during temperature rise is calculated. The results show that the temperature accuracy of superconducting magnetic levitation rotor is critical to the drift accuracy. The drift caused by temperature change mainly depends on the accuracy of mechanical components and the stability of temperature control system, which can provide some reference for the safe operation of the rotor.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2023.3300019</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-5912-4003</orcidid><orcidid>https://orcid.org/0000-0002-3073-8773</orcidid><orcidid>https://orcid.org/0000-0001-7401-4104</orcidid><orcidid>https://orcid.org/0000-0001-5987-4069</orcidid><orcidid>https://orcid.org/0000-0003-1101-9674</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2023-11, Vol.33 (8), p.1-6
issn 1051-8223
1558-2515
language eng
recordid cdi_crossref_primary_10_1109_TASC_2023_3300019
source IEEE Electronic Library (IEL)
subjects Accelerometers
Conduction heating
Conduction model
Conductive heat transfer
Drift
Heat transfer
Heat transfer analysis
Heating systems
Magnetic levitation
Mathematical models
Mechanical components
Niobium
Radiation distribution
Rotors
superconducting magnetic levitation rotor
Superconducting magnets
Superconductivity
temperature conduction model
Temperature control
Temperature effects
thermal design principles
title Heat Transfer Analysis of Superconducting Magnetically Levitation Rotor Startup Process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T14%3A10%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20Transfer%20Analysis%20of%20Superconducting%20Magnetically%20Levitation%20Rotor%20Startup%20Process&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Cui,%20Xu&rft.date=2023-11-01&rft.volume=33&rft.issue=8&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2023.3300019&rft_dat=%3Cproquest_RIE%3E2853019176%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2853019176&rft_id=info:pmid/&rft_ieee_id=10197547&rfr_iscdi=true