Practical Forecasting of AC Losses in Multi-layer 2G-HTS Cold Dielectric Conductors

With the recent progresses on the designing and manufacturing of lightweight superconducting cables with high engineering current density, the need for a reliable, fast, and accurate computational model forecasting the alternating current (AC) losses of cold-dielectric conductors is pivotal for powe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2023-08, Vol.33 (5), p.1-6
Hauptverfasser: Clegg, M., Ruiz, H. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 5
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 33
creator Clegg, M.
Ruiz, H. S.
description With the recent progresses on the designing and manufacturing of lightweight superconducting cables with high engineering current density, the need for a reliable, fast, and accurate computational model forecasting the alternating current (AC) losses of cold-dielectric conductors is pivotal for power grid investors and operators. However, validating such models is not an easy task. This is due to the low availability of experimental data for large scale power cables, and likewise, because of the large computational burden which underlies the total number of second generational high temperature superconducting (2G-HTS) tapes in the modelling of realistic power cables. Thus, aiming to overcome these challenges, we present a detailed two-dimensional H-model capable to reproduce the experimentally measured AC-losses of multi-layer power cables made of tens of 2G-HTS tapes. Two cable designs with very high critical currents (\text{1.7}~kA and \text{3.2}~kA) have been considered. These are composed of five and six concentric layers wound over a cylindrical former consisting of 50 and 67 2G-HTS tapes, respectively. In both situations a remarkable resemblance between the simulations and experiments has been found, offering a unique view of the local electrodynamics of the wound tapes where the mechanisms of shielding, magnetization, and transport currents coexist within the hysteretic process.
doi_str_mv 10.1109/TASC.2023.3257275
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TASC_2023_3257275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10070845</ieee_id><sourcerecordid>2799861173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-71a4145a19f667fe42008901c3e97a7ae60f8fc595fe68126ea97faa9d3f677d3</originalsourceid><addsrcrecordid>eNpNkMFKAzEQhoMoWKsPIHgIeN6aSTab5FhW2woVhdZzCNmJpKzdmuwefHu3tAdPMwPfP8N8hNwDmwEw87Sdb-oZZ1zMBJeKK3lBJiClLrgEeTn2TEKhORfX5CbnHWNQ6lJOyOYjOd9H71q66BJ6l_u4_6JdoPOarrucMdO4p29D28eidb-YKF8Wq-2G1l3b0OeILfo-RT_O-2bwfZfyLbkKrs14d65T8rl42darYv2-fK3n68JzbfpCgSuhlA5MqCoVsOSMacPACzTKKYcVCzp4aWTASgOv0BkVnDONCJVSjZiSx9PeQ-p-Bsy93XVD2o8nLVfG6ApAiZGCE-XT-E7CYA8pfrv0a4HZozt7dGeP7uzZ3Zh5OGUiIv7jmWKjNfEHTVRpJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799861173</pqid></control><display><type>article</type><title>Practical Forecasting of AC Losses in Multi-layer 2G-HTS Cold Dielectric Conductors</title><source>IEEE Electronic Library (IEL)</source><creator>Clegg, M. ; Ruiz, H. S.</creator><creatorcontrib>Clegg, M. ; Ruiz, H. S.</creatorcontrib><description><![CDATA[With the recent progresses on the designing and manufacturing of lightweight superconducting cables with high engineering current density, the need for a reliable, fast, and accurate computational model forecasting the alternating current (AC) losses of cold-dielectric conductors is pivotal for power grid investors and operators. However, validating such models is not an easy task. This is due to the low availability of experimental data for large scale power cables, and likewise, because of the large computational burden which underlies the total number of second generational high temperature superconducting (2G-HTS) tapes in the modelling of realistic power cables. Thus, aiming to overcome these challenges, we present a detailed two-dimensional H-model capable to reproduce the experimentally measured AC-losses of multi-layer power cables made of tens of 2G-HTS tapes. Two cable designs with very high critical currents (<inline-formula><tex-math notation="LaTeX">\text{1.7}~kA</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">\text{3.2}~kA</tex-math></inline-formula>) have been considered. These are composed of five and six concentric layers wound over a cylindrical former consisting of 50 and 67 2G-HTS tapes, respectively. In both situations a remarkable resemblance between the simulations and experiments has been found, offering a unique view of the local electrodynamics of the wound tapes where the mechanisms of shielding, magnetization, and transport currents coexist within the hysteretic process.]]></description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2023.3257275</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>AC losses ; Alternating current ; Cable shielding ; Cables ; Computational modeling ; COMSOL ; Conductors ; Electrodynamics ; Electromagnetic Profiles ; Forecasting ; H-formulation ; High temperature ; High-temperature superconductors ; Magnetic cores ; Magnetic fields ; Mathematical models ; Multilayers ; Power cables ; Superconducting cables ; Superconducting tapes ; Superconductivity ; Two dimensional models</subject><ispartof>IEEE transactions on applied superconductivity, 2023-08, Vol.33 (5), p.1-6</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-71a4145a19f667fe42008901c3e97a7ae60f8fc595fe68126ea97faa9d3f677d3</cites><orcidid>0000-0002-7602-5779 ; 0000-0002-6100-1918</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10070845$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10070845$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Clegg, M.</creatorcontrib><creatorcontrib>Ruiz, H. S.</creatorcontrib><title>Practical Forecasting of AC Losses in Multi-layer 2G-HTS Cold Dielectric Conductors</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description><![CDATA[With the recent progresses on the designing and manufacturing of lightweight superconducting cables with high engineering current density, the need for a reliable, fast, and accurate computational model forecasting the alternating current (AC) losses of cold-dielectric conductors is pivotal for power grid investors and operators. However, validating such models is not an easy task. This is due to the low availability of experimental data for large scale power cables, and likewise, because of the large computational burden which underlies the total number of second generational high temperature superconducting (2G-HTS) tapes in the modelling of realistic power cables. Thus, aiming to overcome these challenges, we present a detailed two-dimensional H-model capable to reproduce the experimentally measured AC-losses of multi-layer power cables made of tens of 2G-HTS tapes. Two cable designs with very high critical currents (<inline-formula><tex-math notation="LaTeX">\text{1.7}~kA</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">\text{3.2}~kA</tex-math></inline-formula>) have been considered. These are composed of five and six concentric layers wound over a cylindrical former consisting of 50 and 67 2G-HTS tapes, respectively. In both situations a remarkable resemblance between the simulations and experiments has been found, offering a unique view of the local electrodynamics of the wound tapes where the mechanisms of shielding, magnetization, and transport currents coexist within the hysteretic process.]]></description><subject>AC losses</subject><subject>Alternating current</subject><subject>Cable shielding</subject><subject>Cables</subject><subject>Computational modeling</subject><subject>COMSOL</subject><subject>Conductors</subject><subject>Electrodynamics</subject><subject>Electromagnetic Profiles</subject><subject>Forecasting</subject><subject>H-formulation</subject><subject>High temperature</subject><subject>High-temperature superconductors</subject><subject>Magnetic cores</subject><subject>Magnetic fields</subject><subject>Mathematical models</subject><subject>Multilayers</subject><subject>Power cables</subject><subject>Superconducting cables</subject><subject>Superconducting tapes</subject><subject>Superconductivity</subject><subject>Two dimensional models</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFKAzEQhoMoWKsPIHgIeN6aSTab5FhW2woVhdZzCNmJpKzdmuwefHu3tAdPMwPfP8N8hNwDmwEw87Sdb-oZZ1zMBJeKK3lBJiClLrgEeTn2TEKhORfX5CbnHWNQ6lJOyOYjOd9H71q66BJ6l_u4_6JdoPOarrucMdO4p29D28eidb-YKF8Wq-2G1l3b0OeILfo-RT_O-2bwfZfyLbkKrs14d65T8rl42darYv2-fK3n68JzbfpCgSuhlA5MqCoVsOSMacPACzTKKYcVCzp4aWTASgOv0BkVnDONCJVSjZiSx9PeQ-p-Bsy93XVD2o8nLVfG6ApAiZGCE-XT-E7CYA8pfrv0a4HZozt7dGeP7uzZ3Zh5OGUiIv7jmWKjNfEHTVRpJA</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Clegg, M.</creator><creator>Ruiz, H. S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7602-5779</orcidid><orcidid>https://orcid.org/0000-0002-6100-1918</orcidid></search><sort><creationdate>20230801</creationdate><title>Practical Forecasting of AC Losses in Multi-layer 2G-HTS Cold Dielectric Conductors</title><author>Clegg, M. ; Ruiz, H. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-71a4145a19f667fe42008901c3e97a7ae60f8fc595fe68126ea97faa9d3f677d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>AC losses</topic><topic>Alternating current</topic><topic>Cable shielding</topic><topic>Cables</topic><topic>Computational modeling</topic><topic>COMSOL</topic><topic>Conductors</topic><topic>Electrodynamics</topic><topic>Electromagnetic Profiles</topic><topic>Forecasting</topic><topic>H-formulation</topic><topic>High temperature</topic><topic>High-temperature superconductors</topic><topic>Magnetic cores</topic><topic>Magnetic fields</topic><topic>Mathematical models</topic><topic>Multilayers</topic><topic>Power cables</topic><topic>Superconducting cables</topic><topic>Superconducting tapes</topic><topic>Superconductivity</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clegg, M.</creatorcontrib><creatorcontrib>Ruiz, H. S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Clegg, M.</au><au>Ruiz, H. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Practical Forecasting of AC Losses in Multi-layer 2G-HTS Cold Dielectric Conductors</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>33</volume><issue>5</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract><![CDATA[With the recent progresses on the designing and manufacturing of lightweight superconducting cables with high engineering current density, the need for a reliable, fast, and accurate computational model forecasting the alternating current (AC) losses of cold-dielectric conductors is pivotal for power grid investors and operators. However, validating such models is not an easy task. This is due to the low availability of experimental data for large scale power cables, and likewise, because of the large computational burden which underlies the total number of second generational high temperature superconducting (2G-HTS) tapes in the modelling of realistic power cables. Thus, aiming to overcome these challenges, we present a detailed two-dimensional H-model capable to reproduce the experimentally measured AC-losses of multi-layer power cables made of tens of 2G-HTS tapes. Two cable designs with very high critical currents (<inline-formula><tex-math notation="LaTeX">\text{1.7}~kA</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">\text{3.2}~kA</tex-math></inline-formula>) have been considered. These are composed of five and six concentric layers wound over a cylindrical former consisting of 50 and 67 2G-HTS tapes, respectively. In both situations a remarkable resemblance between the simulations and experiments has been found, offering a unique view of the local electrodynamics of the wound tapes where the mechanisms of shielding, magnetization, and transport currents coexist within the hysteretic process.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2023.3257275</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7602-5779</orcidid><orcidid>https://orcid.org/0000-0002-6100-1918</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2023-08, Vol.33 (5), p.1-6
issn 1051-8223
1558-2515
language eng
recordid cdi_crossref_primary_10_1109_TASC_2023_3257275
source IEEE Electronic Library (IEL)
subjects AC losses
Alternating current
Cable shielding
Cables
Computational modeling
COMSOL
Conductors
Electrodynamics
Electromagnetic Profiles
Forecasting
H-formulation
High temperature
High-temperature superconductors
Magnetic cores
Magnetic fields
Mathematical models
Multilayers
Power cables
Superconducting cables
Superconducting tapes
Superconductivity
Two dimensional models
title Practical Forecasting of AC Losses in Multi-layer 2G-HTS Cold Dielectric Conductors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A27%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Practical%20Forecasting%20of%20AC%20Losses%20in%20Multi-layer%202G-HTS%20Cold%20Dielectric%20Conductors&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Clegg,%20M.&rft.date=2023-08-01&rft.volume=33&rft.issue=5&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2023.3257275&rft_dat=%3Cproquest_RIE%3E2799861173%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2799861173&rft_id=info:pmid/&rft_ieee_id=10070845&rfr_iscdi=true