High-Temperature Superconducting Cable Optimization Design Software Based on 2-D Finite Element Model
With the increasing electricity power demand in major cities, the existing conventional power cables is difficult to meet the requirements of high-density and large-capacity power transmission. Compared with conventional power cables, high-temperature superconducting cables can significantly increas...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2022-09, Vol.32 (6), p.1-5 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 32 |
creator | Long, Jiajie Ren, Li Li, Jingdong Xu, Ying Shi, Jing Tang, Yuejin |
description | With the increasing electricity power demand in major cities, the existing conventional power cables is difficult to meet the requirements of high-density and large-capacity power transmission. Compared with conventional power cables, high-temperature superconducting cables can significantly increase transmission capacity, reduce power losses, and save land occupation, which have great potential in future urban high-density power transmission applications. However, the process of designing a complete set of HTS cable is very complex, and many factors need to be considered comprehensively, such as current distribution, AC loss calculation, thermal stability analysis. In this case, a HTS cable design software platform is under development to simplify design process and improve the work efficiency of designers. Based on the software, design schemes of three-phase 10kV/1.5kA HTS cable with two different structures are given. A 2-D AC loss finite element model of HTS cable is established and verified. The simulation results show that at low voltage level, the HTS cable with three-phase coaxial structure has good performance, and can save more land, which is more suitable for the expansion of urban power grid in the future. |
doi_str_mv | 10.1109/TASC.2022.3154328 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TASC_2022_3154328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9720926</ieee_id><sourcerecordid>2639936526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-c0ba7bcc9d620364e019460db01c06fbbbb6b03cf64de98d9cb24aa6b498d523</originalsourceid><addsrcrecordid>eNo9UMtOwzAQtBBIlMIHIC6WOKf4EbvxsaQtRSrqoblbjrMprvIicYTg63HVir3MrHZmVhqEHimZUUrUS7bYpzNGGJtxKmLOkis0oUIkERNUXAdOBI0SxvgtuhuGIyE0TmIxQbBxh88og7qD3vixB7wfA7VtU4zWu-aAU5NXgHedd7X7Nd61DV7C4A4N3rel_zbB8moGKHA4sGiJ165xHvCqghoajz_aAqp7dFOaaoCHC05Rtl5l6Sba7t7e08U2skxxH1mSm3lurSokI1zGQKiKJSlyQi2RZR5G5oTbUsYFqKRQNmexMTKPwyIYn6Lnc2zXt18jDF4f27FvwkfNJFeKSxFwiuhZZft2GHoodde72vQ_mhJ9KlOfytSnMvWlzOB5OnscAPzr1ZwRFRL_AAt7cNk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639936526</pqid></control><display><type>article</type><title>High-Temperature Superconducting Cable Optimization Design Software Based on 2-D Finite Element Model</title><source>IEEE Electronic Library (IEL)</source><creator>Long, Jiajie ; Ren, Li ; Li, Jingdong ; Xu, Ying ; Shi, Jing ; Tang, Yuejin</creator><creatorcontrib>Long, Jiajie ; Ren, Li ; Li, Jingdong ; Xu, Ying ; Shi, Jing ; Tang, Yuejin</creatorcontrib><description>With the increasing electricity power demand in major cities, the existing conventional power cables is difficult to meet the requirements of high-density and large-capacity power transmission. Compared with conventional power cables, high-temperature superconducting cables can significantly increase transmission capacity, reduce power losses, and save land occupation, which have great potential in future urban high-density power transmission applications. However, the process of designing a complete set of HTS cable is very complex, and many factors need to be considered comprehensively, such as current distribution, AC loss calculation, thermal stability analysis. In this case, a HTS cable design software platform is under development to simplify design process and improve the work efficiency of designers. Based on the software, design schemes of three-phase 10kV/1.5kA HTS cable with two different structures are given. A 2-D AC loss finite element model of HTS cable is established and verified. The simulation results show that at low voltage level, the HTS cable with three-phase coaxial structure has good performance, and can save more land, which is more suitable for the expansion of urban power grid in the future.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2022.3154328</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>AC loss ; Alternating current ; Analytical models ; Cables ; Coaxial cables ; Current distribution ; Density ; Design ; Design optimization ; Electric cables ; Electric power grids ; Electric power loss ; Electric power transmission ; Electricity distribution ; Finite element method ; High temperature ; High-temperature superconductors ; HTS power cable ; Low voltage ; Mathematical analysis ; Mathematical models ; optimal design ; Power cables ; Software ; Stability analysis ; Superconducting cables ; Superconductivity ; Thermal stability ; Two dimensional models</subject><ispartof>IEEE transactions on applied superconductivity, 2022-09, Vol.32 (6), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-c0ba7bcc9d620364e019460db01c06fbbbb6b03cf64de98d9cb24aa6b498d523</citedby><cites>FETCH-LOGICAL-c293t-c0ba7bcc9d620364e019460db01c06fbbbb6b03cf64de98d9cb24aa6b498d523</cites><orcidid>0000-0001-8259-0603 ; 0000-0002-2463-9699 ; 0000-0002-1085-9463 ; 0000-0001-5248-6004</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9720926$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9720926$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Long, Jiajie</creatorcontrib><creatorcontrib>Ren, Li</creatorcontrib><creatorcontrib>Li, Jingdong</creatorcontrib><creatorcontrib>Xu, Ying</creatorcontrib><creatorcontrib>Shi, Jing</creatorcontrib><creatorcontrib>Tang, Yuejin</creatorcontrib><title>High-Temperature Superconducting Cable Optimization Design Software Based on 2-D Finite Element Model</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>With the increasing electricity power demand in major cities, the existing conventional power cables is difficult to meet the requirements of high-density and large-capacity power transmission. Compared with conventional power cables, high-temperature superconducting cables can significantly increase transmission capacity, reduce power losses, and save land occupation, which have great potential in future urban high-density power transmission applications. However, the process of designing a complete set of HTS cable is very complex, and many factors need to be considered comprehensively, such as current distribution, AC loss calculation, thermal stability analysis. In this case, a HTS cable design software platform is under development to simplify design process and improve the work efficiency of designers. Based on the software, design schemes of three-phase 10kV/1.5kA HTS cable with two different structures are given. A 2-D AC loss finite element model of HTS cable is established and verified. The simulation results show that at low voltage level, the HTS cable with three-phase coaxial structure has good performance, and can save more land, which is more suitable for the expansion of urban power grid in the future.</description><subject>AC loss</subject><subject>Alternating current</subject><subject>Analytical models</subject><subject>Cables</subject><subject>Coaxial cables</subject><subject>Current distribution</subject><subject>Density</subject><subject>Design</subject><subject>Design optimization</subject><subject>Electric cables</subject><subject>Electric power grids</subject><subject>Electric power loss</subject><subject>Electric power transmission</subject><subject>Electricity distribution</subject><subject>Finite element method</subject><subject>High temperature</subject><subject>High-temperature superconductors</subject><subject>HTS power cable</subject><subject>Low voltage</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>optimal design</subject><subject>Power cables</subject><subject>Software</subject><subject>Stability analysis</subject><subject>Superconducting cables</subject><subject>Superconductivity</subject><subject>Thermal stability</subject><subject>Two dimensional models</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UMtOwzAQtBBIlMIHIC6WOKf4EbvxsaQtRSrqoblbjrMprvIicYTg63HVir3MrHZmVhqEHimZUUrUS7bYpzNGGJtxKmLOkis0oUIkERNUXAdOBI0SxvgtuhuGIyE0TmIxQbBxh88og7qD3vixB7wfA7VtU4zWu-aAU5NXgHedd7X7Nd61DV7C4A4N3rel_zbB8moGKHA4sGiJ165xHvCqghoajz_aAqp7dFOaaoCHC05Rtl5l6Sba7t7e08U2skxxH1mSm3lurSokI1zGQKiKJSlyQi2RZR5G5oTbUsYFqKRQNmexMTKPwyIYn6Lnc2zXt18jDF4f27FvwkfNJFeKSxFwiuhZZft2GHoodde72vQ_mhJ9KlOfytSnMvWlzOB5OnscAPzr1ZwRFRL_AAt7cNk</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Long, Jiajie</creator><creator>Ren, Li</creator><creator>Li, Jingdong</creator><creator>Xu, Ying</creator><creator>Shi, Jing</creator><creator>Tang, Yuejin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8259-0603</orcidid><orcidid>https://orcid.org/0000-0002-2463-9699</orcidid><orcidid>https://orcid.org/0000-0002-1085-9463</orcidid><orcidid>https://orcid.org/0000-0001-5248-6004</orcidid></search><sort><creationdate>20220901</creationdate><title>High-Temperature Superconducting Cable Optimization Design Software Based on 2-D Finite Element Model</title><author>Long, Jiajie ; Ren, Li ; Li, Jingdong ; Xu, Ying ; Shi, Jing ; Tang, Yuejin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-c0ba7bcc9d620364e019460db01c06fbbbb6b03cf64de98d9cb24aa6b498d523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>AC loss</topic><topic>Alternating current</topic><topic>Analytical models</topic><topic>Cables</topic><topic>Coaxial cables</topic><topic>Current distribution</topic><topic>Density</topic><topic>Design</topic><topic>Design optimization</topic><topic>Electric cables</topic><topic>Electric power grids</topic><topic>Electric power loss</topic><topic>Electric power transmission</topic><topic>Electricity distribution</topic><topic>Finite element method</topic><topic>High temperature</topic><topic>High-temperature superconductors</topic><topic>HTS power cable</topic><topic>Low voltage</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>optimal design</topic><topic>Power cables</topic><topic>Software</topic><topic>Stability analysis</topic><topic>Superconducting cables</topic><topic>Superconductivity</topic><topic>Thermal stability</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Jiajie</creatorcontrib><creatorcontrib>Ren, Li</creatorcontrib><creatorcontrib>Li, Jingdong</creatorcontrib><creatorcontrib>Xu, Ying</creatorcontrib><creatorcontrib>Shi, Jing</creatorcontrib><creatorcontrib>Tang, Yuejin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Long, Jiajie</au><au>Ren, Li</au><au>Li, Jingdong</au><au>Xu, Ying</au><au>Shi, Jing</au><au>Tang, Yuejin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Temperature Superconducting Cable Optimization Design Software Based on 2-D Finite Element Model</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>32</volume><issue>6</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>With the increasing electricity power demand in major cities, the existing conventional power cables is difficult to meet the requirements of high-density and large-capacity power transmission. Compared with conventional power cables, high-temperature superconducting cables can significantly increase transmission capacity, reduce power losses, and save land occupation, which have great potential in future urban high-density power transmission applications. However, the process of designing a complete set of HTS cable is very complex, and many factors need to be considered comprehensively, such as current distribution, AC loss calculation, thermal stability analysis. In this case, a HTS cable design software platform is under development to simplify design process and improve the work efficiency of designers. Based on the software, design schemes of three-phase 10kV/1.5kA HTS cable with two different structures are given. A 2-D AC loss finite element model of HTS cable is established and verified. The simulation results show that at low voltage level, the HTS cable with three-phase coaxial structure has good performance, and can save more land, which is more suitable for the expansion of urban power grid in the future.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2022.3154328</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-8259-0603</orcidid><orcidid>https://orcid.org/0000-0002-2463-9699</orcidid><orcidid>https://orcid.org/0000-0002-1085-9463</orcidid><orcidid>https://orcid.org/0000-0001-5248-6004</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2022-09, Vol.32 (6), p.1-5 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TASC_2022_3154328 |
source | IEEE Electronic Library (IEL) |
subjects | AC loss Alternating current Analytical models Cables Coaxial cables Current distribution Density Design Design optimization Electric cables Electric power grids Electric power loss Electric power transmission Electricity distribution Finite element method High temperature High-temperature superconductors HTS power cable Low voltage Mathematical analysis Mathematical models optimal design Power cables Software Stability analysis Superconducting cables Superconductivity Thermal stability Two dimensional models |
title | High-Temperature Superconducting Cable Optimization Design Software Based on 2-D Finite Element Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A54%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Temperature%20Superconducting%20Cable%20Optimization%20Design%20Software%20Based%20on%202-D%20Finite%20Element%20Model&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Long,%20Jiajie&rft.date=2022-09-01&rft.volume=32&rft.issue=6&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2022.3154328&rft_dat=%3Cproquest_RIE%3E2639936526%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2639936526&rft_id=info:pmid/&rft_ieee_id=9720926&rfr_iscdi=true |