High-Temperature Superconducting Cable Optimization Design Software Based on 2-D Finite Element Model

With the increasing electricity power demand in major cities, the existing conventional power cables is difficult to meet the requirements of high-density and large-capacity power transmission. Compared with conventional power cables, high-temperature superconducting cables can significantly increas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2022-09, Vol.32 (6), p.1-5
Hauptverfasser: Long, Jiajie, Ren, Li, Li, Jingdong, Xu, Ying, Shi, Jing, Tang, Yuejin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 6
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 32
creator Long, Jiajie
Ren, Li
Li, Jingdong
Xu, Ying
Shi, Jing
Tang, Yuejin
description With the increasing electricity power demand in major cities, the existing conventional power cables is difficult to meet the requirements of high-density and large-capacity power transmission. Compared with conventional power cables, high-temperature superconducting cables can significantly increase transmission capacity, reduce power losses, and save land occupation, which have great potential in future urban high-density power transmission applications. However, the process of designing a complete set of HTS cable is very complex, and many factors need to be considered comprehensively, such as current distribution, AC loss calculation, thermal stability analysis. In this case, a HTS cable design software platform is under development to simplify design process and improve the work efficiency of designers. Based on the software, design schemes of three-phase 10kV/1.5kA HTS cable with two different structures are given. A 2-D AC loss finite element model of HTS cable is established and verified. The simulation results show that at low voltage level, the HTS cable with three-phase coaxial structure has good performance, and can save more land, which is more suitable for the expansion of urban power grid in the future.
doi_str_mv 10.1109/TASC.2022.3154328
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TASC_2022_3154328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9720926</ieee_id><sourcerecordid>2639936526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-c0ba7bcc9d620364e019460db01c06fbbbb6b03cf64de98d9cb24aa6b498d523</originalsourceid><addsrcrecordid>eNo9UMtOwzAQtBBIlMIHIC6WOKf4EbvxsaQtRSrqoblbjrMprvIicYTg63HVir3MrHZmVhqEHimZUUrUS7bYpzNGGJtxKmLOkis0oUIkERNUXAdOBI0SxvgtuhuGIyE0TmIxQbBxh88og7qD3vixB7wfA7VtU4zWu-aAU5NXgHedd7X7Nd61DV7C4A4N3rel_zbB8moGKHA4sGiJ165xHvCqghoajz_aAqp7dFOaaoCHC05Rtl5l6Sba7t7e08U2skxxH1mSm3lurSokI1zGQKiKJSlyQi2RZR5G5oTbUsYFqKRQNmexMTKPwyIYn6Lnc2zXt18jDF4f27FvwkfNJFeKSxFwiuhZZft2GHoodde72vQ_mhJ9KlOfytSnMvWlzOB5OnscAPzr1ZwRFRL_AAt7cNk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639936526</pqid></control><display><type>article</type><title>High-Temperature Superconducting Cable Optimization Design Software Based on 2-D Finite Element Model</title><source>IEEE Electronic Library (IEL)</source><creator>Long, Jiajie ; Ren, Li ; Li, Jingdong ; Xu, Ying ; Shi, Jing ; Tang, Yuejin</creator><creatorcontrib>Long, Jiajie ; Ren, Li ; Li, Jingdong ; Xu, Ying ; Shi, Jing ; Tang, Yuejin</creatorcontrib><description>With the increasing electricity power demand in major cities, the existing conventional power cables is difficult to meet the requirements of high-density and large-capacity power transmission. Compared with conventional power cables, high-temperature superconducting cables can significantly increase transmission capacity, reduce power losses, and save land occupation, which have great potential in future urban high-density power transmission applications. However, the process of designing a complete set of HTS cable is very complex, and many factors need to be considered comprehensively, such as current distribution, AC loss calculation, thermal stability analysis. In this case, a HTS cable design software platform is under development to simplify design process and improve the work efficiency of designers. Based on the software, design schemes of three-phase 10kV/1.5kA HTS cable with two different structures are given. A 2-D AC loss finite element model of HTS cable is established and verified. The simulation results show that at low voltage level, the HTS cable with three-phase coaxial structure has good performance, and can save more land, which is more suitable for the expansion of urban power grid in the future.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2022.3154328</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>AC loss ; Alternating current ; Analytical models ; Cables ; Coaxial cables ; Current distribution ; Density ; Design ; Design optimization ; Electric cables ; Electric power grids ; Electric power loss ; Electric power transmission ; Electricity distribution ; Finite element method ; High temperature ; High-temperature superconductors ; HTS power cable ; Low voltage ; Mathematical analysis ; Mathematical models ; optimal design ; Power cables ; Software ; Stability analysis ; Superconducting cables ; Superconductivity ; Thermal stability ; Two dimensional models</subject><ispartof>IEEE transactions on applied superconductivity, 2022-09, Vol.32 (6), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-c0ba7bcc9d620364e019460db01c06fbbbb6b03cf64de98d9cb24aa6b498d523</citedby><cites>FETCH-LOGICAL-c293t-c0ba7bcc9d620364e019460db01c06fbbbb6b03cf64de98d9cb24aa6b498d523</cites><orcidid>0000-0001-8259-0603 ; 0000-0002-2463-9699 ; 0000-0002-1085-9463 ; 0000-0001-5248-6004</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9720926$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9720926$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Long, Jiajie</creatorcontrib><creatorcontrib>Ren, Li</creatorcontrib><creatorcontrib>Li, Jingdong</creatorcontrib><creatorcontrib>Xu, Ying</creatorcontrib><creatorcontrib>Shi, Jing</creatorcontrib><creatorcontrib>Tang, Yuejin</creatorcontrib><title>High-Temperature Superconducting Cable Optimization Design Software Based on 2-D Finite Element Model</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>With the increasing electricity power demand in major cities, the existing conventional power cables is difficult to meet the requirements of high-density and large-capacity power transmission. Compared with conventional power cables, high-temperature superconducting cables can significantly increase transmission capacity, reduce power losses, and save land occupation, which have great potential in future urban high-density power transmission applications. However, the process of designing a complete set of HTS cable is very complex, and many factors need to be considered comprehensively, such as current distribution, AC loss calculation, thermal stability analysis. In this case, a HTS cable design software platform is under development to simplify design process and improve the work efficiency of designers. Based on the software, design schemes of three-phase 10kV/1.5kA HTS cable with two different structures are given. A 2-D AC loss finite element model of HTS cable is established and verified. The simulation results show that at low voltage level, the HTS cable with three-phase coaxial structure has good performance, and can save more land, which is more suitable for the expansion of urban power grid in the future.</description><subject>AC loss</subject><subject>Alternating current</subject><subject>Analytical models</subject><subject>Cables</subject><subject>Coaxial cables</subject><subject>Current distribution</subject><subject>Density</subject><subject>Design</subject><subject>Design optimization</subject><subject>Electric cables</subject><subject>Electric power grids</subject><subject>Electric power loss</subject><subject>Electric power transmission</subject><subject>Electricity distribution</subject><subject>Finite element method</subject><subject>High temperature</subject><subject>High-temperature superconductors</subject><subject>HTS power cable</subject><subject>Low voltage</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>optimal design</subject><subject>Power cables</subject><subject>Software</subject><subject>Stability analysis</subject><subject>Superconducting cables</subject><subject>Superconductivity</subject><subject>Thermal stability</subject><subject>Two dimensional models</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UMtOwzAQtBBIlMIHIC6WOKf4EbvxsaQtRSrqoblbjrMprvIicYTg63HVir3MrHZmVhqEHimZUUrUS7bYpzNGGJtxKmLOkis0oUIkERNUXAdOBI0SxvgtuhuGIyE0TmIxQbBxh88og7qD3vixB7wfA7VtU4zWu-aAU5NXgHedd7X7Nd61DV7C4A4N3rel_zbB8moGKHA4sGiJ165xHvCqghoajz_aAqp7dFOaaoCHC05Rtl5l6Sba7t7e08U2skxxH1mSm3lurSokI1zGQKiKJSlyQi2RZR5G5oTbUsYFqKRQNmexMTKPwyIYn6Lnc2zXt18jDF4f27FvwkfNJFeKSxFwiuhZZft2GHoodde72vQ_mhJ9KlOfytSnMvWlzOB5OnscAPzr1ZwRFRL_AAt7cNk</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Long, Jiajie</creator><creator>Ren, Li</creator><creator>Li, Jingdong</creator><creator>Xu, Ying</creator><creator>Shi, Jing</creator><creator>Tang, Yuejin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8259-0603</orcidid><orcidid>https://orcid.org/0000-0002-2463-9699</orcidid><orcidid>https://orcid.org/0000-0002-1085-9463</orcidid><orcidid>https://orcid.org/0000-0001-5248-6004</orcidid></search><sort><creationdate>20220901</creationdate><title>High-Temperature Superconducting Cable Optimization Design Software Based on 2-D Finite Element Model</title><author>Long, Jiajie ; Ren, Li ; Li, Jingdong ; Xu, Ying ; Shi, Jing ; Tang, Yuejin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-c0ba7bcc9d620364e019460db01c06fbbbb6b03cf64de98d9cb24aa6b498d523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>AC loss</topic><topic>Alternating current</topic><topic>Analytical models</topic><topic>Cables</topic><topic>Coaxial cables</topic><topic>Current distribution</topic><topic>Density</topic><topic>Design</topic><topic>Design optimization</topic><topic>Electric cables</topic><topic>Electric power grids</topic><topic>Electric power loss</topic><topic>Electric power transmission</topic><topic>Electricity distribution</topic><topic>Finite element method</topic><topic>High temperature</topic><topic>High-temperature superconductors</topic><topic>HTS power cable</topic><topic>Low voltage</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>optimal design</topic><topic>Power cables</topic><topic>Software</topic><topic>Stability analysis</topic><topic>Superconducting cables</topic><topic>Superconductivity</topic><topic>Thermal stability</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Jiajie</creatorcontrib><creatorcontrib>Ren, Li</creatorcontrib><creatorcontrib>Li, Jingdong</creatorcontrib><creatorcontrib>Xu, Ying</creatorcontrib><creatorcontrib>Shi, Jing</creatorcontrib><creatorcontrib>Tang, Yuejin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Long, Jiajie</au><au>Ren, Li</au><au>Li, Jingdong</au><au>Xu, Ying</au><au>Shi, Jing</au><au>Tang, Yuejin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Temperature Superconducting Cable Optimization Design Software Based on 2-D Finite Element Model</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>32</volume><issue>6</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>With the increasing electricity power demand in major cities, the existing conventional power cables is difficult to meet the requirements of high-density and large-capacity power transmission. Compared with conventional power cables, high-temperature superconducting cables can significantly increase transmission capacity, reduce power losses, and save land occupation, which have great potential in future urban high-density power transmission applications. However, the process of designing a complete set of HTS cable is very complex, and many factors need to be considered comprehensively, such as current distribution, AC loss calculation, thermal stability analysis. In this case, a HTS cable design software platform is under development to simplify design process and improve the work efficiency of designers. Based on the software, design schemes of three-phase 10kV/1.5kA HTS cable with two different structures are given. A 2-D AC loss finite element model of HTS cable is established and verified. The simulation results show that at low voltage level, the HTS cable with three-phase coaxial structure has good performance, and can save more land, which is more suitable for the expansion of urban power grid in the future.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2022.3154328</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-8259-0603</orcidid><orcidid>https://orcid.org/0000-0002-2463-9699</orcidid><orcidid>https://orcid.org/0000-0002-1085-9463</orcidid><orcidid>https://orcid.org/0000-0001-5248-6004</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2022-09, Vol.32 (6), p.1-5
issn 1051-8223
1558-2515
language eng
recordid cdi_crossref_primary_10_1109_TASC_2022_3154328
source IEEE Electronic Library (IEL)
subjects AC loss
Alternating current
Analytical models
Cables
Coaxial cables
Current distribution
Density
Design
Design optimization
Electric cables
Electric power grids
Electric power loss
Electric power transmission
Electricity distribution
Finite element method
High temperature
High-temperature superconductors
HTS power cable
Low voltage
Mathematical analysis
Mathematical models
optimal design
Power cables
Software
Stability analysis
Superconducting cables
Superconductivity
Thermal stability
Two dimensional models
title High-Temperature Superconducting Cable Optimization Design Software Based on 2-D Finite Element Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A54%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Temperature%20Superconducting%20Cable%20Optimization%20Design%20Software%20Based%20on%202-D%20Finite%20Element%20Model&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Long,%20Jiajie&rft.date=2022-09-01&rft.volume=32&rft.issue=6&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2022.3154328&rft_dat=%3Cproquest_RIE%3E2639936526%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2639936526&rft_id=info:pmid/&rft_ieee_id=9720926&rfr_iscdi=true