Waveform Control Pulsed Field Magnetization of RE-Ba-Cu-O Bulk Superconducting Rings
One of the potential applications of ring-shaped, single grain RE-Ba-Cu-O bulk superconductors is in desktop magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) systems as an alternative to conventional permanent magnets. The higher magnetic field available from magnetized bulk sup...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2022-06, Vol.32 (4), p.1-5 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 32 |
creator | Tsui, Yee Kin Moseley, Dominic Dennis, A. R. Shi, Yunhua Beck, Michael Cientanni, Vito Cardwell, David Durrell, John Ainslie, Mark |
description | One of the potential applications of ring-shaped, single grain RE-Ba-Cu-O bulk superconductors is in desktop magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) systems as an alternative to conventional permanent magnets. The higher magnetic field available from magnetized bulk superconductors could significantly improve the performance of such systems, as well as reduce their size and increase portability. The pulsed field magnetization (PFM) method provides a fast, compact and cost-effective method for magnetizing these materials as trapped field magnets. However, bulk superconducting rings are very susceptible to thermomagnetic instabilities during the PFM process, and thus, to date, the reported trapped fields in ring bulks magnetized by PFM are less than 0.35 T at the centre of single rings. In this work, we demonstrate that the trapped field in a superconducting ring bulk can be enhanced significantly by optimizing the waveform of the magnetizing pulse used in the PFM method. This optimization can be achieved easily by using an Insulated Gate Bipolar Transistor as a fast-switching device with a controllable switching frequency in the pulse-generating electric circuit. Our findings represent a key step forward in utilizing bulk, single-grain superconducting rings magnetized by PFM in portable magnet systems. |
doi_str_mv | 10.1109/TASC.2021.3132553 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TASC_2021_3132553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9635676</ieee_id><sourcerecordid>2610171613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-7b0c8ef592cd8d02a759dd4e8c10ba3e0468e0b56bcde416ecf2e55f5b5e77483</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoOKcPIN4EvO7MSZo0u9yKU2Ey2SZeljQ5HZ1dM9NW0Ke3Y8Obc87F9_8HPkJugY0A2PhhPVmlI844jAQILqU4IwOQUkdcgjzvbyYh0pyLS3LVNFvGINaxHJD1h_nGwocdTX3dBl_Rt65q0NFZiZWjr2ZTY1v-mrb0NfUFXT5GUxOlXbSg0676pKtuj8H62nW2LesNXfajuSYXhelbbk57SN5nj-v0OZovnl7SyTyyQqg2SnJmNRZyzK3TjnGTyLFzMWoLLDcCWaw0slyq3DqMQaEtOEpZyFxiksRaDMn9sXcf_FeHTZttfRfq_mXGFTBIQIHoKThSNvimCVhk-1DuTPjJgGUHedlBXnaQl53k9Zm7Y6ZExH9-rIRUiRJ_dWlqjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610171613</pqid></control><display><type>article</type><title>Waveform Control Pulsed Field Magnetization of RE-Ba-Cu-O Bulk Superconducting Rings</title><source>IEEE Electronic Library (IEL)</source><creator>Tsui, Yee Kin ; Moseley, Dominic ; Dennis, A. R. ; Shi, Yunhua ; Beck, Michael ; Cientanni, Vito ; Cardwell, David ; Durrell, John ; Ainslie, Mark</creator><creatorcontrib>Tsui, Yee Kin ; Moseley, Dominic ; Dennis, A. R. ; Shi, Yunhua ; Beck, Michael ; Cientanni, Vito ; Cardwell, David ; Durrell, John ; Ainslie, Mark</creatorcontrib><description>One of the potential applications of ring-shaped, single grain RE-Ba-Cu-O bulk superconductors is in desktop magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) systems as an alternative to conventional permanent magnets. The higher magnetic field available from magnetized bulk superconductors could significantly improve the performance of such systems, as well as reduce their size and increase portability. The pulsed field magnetization (PFM) method provides a fast, compact and cost-effective method for magnetizing these materials as trapped field magnets. However, bulk superconducting rings are very susceptible to thermomagnetic instabilities during the PFM process, and thus, to date, the reported trapped fields in ring bulks magnetized by PFM are less than 0.35 T at the centre of single rings. In this work, we demonstrate that the trapped field in a superconducting ring bulk can be enhanced significantly by optimizing the waveform of the magnetizing pulse used in the PFM method. This optimization can be achieved easily by using an Insulated Gate Bipolar Transistor as a fast-switching device with a controllable switching frequency in the pulse-generating electric circuit. Our findings represent a key step forward in utilizing bulk, single-grain superconducting rings magnetized by PFM in portable magnet systems.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2021.3132553</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>bulk superconducting rings ; bulk superconductors ; Circuits ; High-temperature superconductivity ; High-temperature superconductors ; Insulated gate bipolar transistors ; Magnetic field measurement ; Magnetic flux ; Magnetic resonance imaging ; Magnetism ; Magnetization ; NMR ; Nuclear magnetic resonance ; Optimization ; Permanent magnets ; pulsed field magnetization ; Semiconductor devices ; Superconducting magnets ; Superconductivity ; Superconductors ; Switching ; trapped field magnets ; Voltage measurement ; waveform control ; Waveforms</subject><ispartof>IEEE transactions on applied superconductivity, 2022-06, Vol.32 (4), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-7b0c8ef592cd8d02a759dd4e8c10ba3e0468e0b56bcde416ecf2e55f5b5e77483</citedby><cites>FETCH-LOGICAL-c336t-7b0c8ef592cd8d02a759dd4e8c10ba3e0468e0b56bcde416ecf2e55f5b5e77483</cites><orcidid>0000-0001-7673-0024 ; 0000-0003-4476-3803 ; 0000-0002-2020-2131 ; 0000-0003-0466-3680 ; 0000-0003-0712-3102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9635676$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9635676$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tsui, Yee Kin</creatorcontrib><creatorcontrib>Moseley, Dominic</creatorcontrib><creatorcontrib>Dennis, A. R.</creatorcontrib><creatorcontrib>Shi, Yunhua</creatorcontrib><creatorcontrib>Beck, Michael</creatorcontrib><creatorcontrib>Cientanni, Vito</creatorcontrib><creatorcontrib>Cardwell, David</creatorcontrib><creatorcontrib>Durrell, John</creatorcontrib><creatorcontrib>Ainslie, Mark</creatorcontrib><title>Waveform Control Pulsed Field Magnetization of RE-Ba-Cu-O Bulk Superconducting Rings</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>One of the potential applications of ring-shaped, single grain RE-Ba-Cu-O bulk superconductors is in desktop magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) systems as an alternative to conventional permanent magnets. The higher magnetic field available from magnetized bulk superconductors could significantly improve the performance of such systems, as well as reduce their size and increase portability. The pulsed field magnetization (PFM) method provides a fast, compact and cost-effective method for magnetizing these materials as trapped field magnets. However, bulk superconducting rings are very susceptible to thermomagnetic instabilities during the PFM process, and thus, to date, the reported trapped fields in ring bulks magnetized by PFM are less than 0.35 T at the centre of single rings. In this work, we demonstrate that the trapped field in a superconducting ring bulk can be enhanced significantly by optimizing the waveform of the magnetizing pulse used in the PFM method. This optimization can be achieved easily by using an Insulated Gate Bipolar Transistor as a fast-switching device with a controllable switching frequency in the pulse-generating electric circuit. Our findings represent a key step forward in utilizing bulk, single-grain superconducting rings magnetized by PFM in portable magnet systems.</description><subject>bulk superconducting rings</subject><subject>bulk superconductors</subject><subject>Circuits</subject><subject>High-temperature superconductivity</subject><subject>High-temperature superconductors</subject><subject>Insulated gate bipolar transistors</subject><subject>Magnetic field measurement</subject><subject>Magnetic flux</subject><subject>Magnetic resonance imaging</subject><subject>Magnetism</subject><subject>Magnetization</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Optimization</subject><subject>Permanent magnets</subject><subject>pulsed field magnetization</subject><subject>Semiconductor devices</subject><subject>Superconducting magnets</subject><subject>Superconductivity</subject><subject>Superconductors</subject><subject>Switching</subject><subject>trapped field magnets</subject><subject>Voltage measurement</subject><subject>waveform control</subject><subject>Waveforms</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFKwzAUhoMoOKcPIN4EvO7MSZo0u9yKU2Ey2SZeljQ5HZ1dM9NW0Ke3Y8Obc87F9_8HPkJugY0A2PhhPVmlI844jAQILqU4IwOQUkdcgjzvbyYh0pyLS3LVNFvGINaxHJD1h_nGwocdTX3dBl_Rt65q0NFZiZWjr2ZTY1v-mrb0NfUFXT5GUxOlXbSg0676pKtuj8H62nW2LesNXfajuSYXhelbbk57SN5nj-v0OZovnl7SyTyyQqg2SnJmNRZyzK3TjnGTyLFzMWoLLDcCWaw0slyq3DqMQaEtOEpZyFxiksRaDMn9sXcf_FeHTZttfRfq_mXGFTBIQIHoKThSNvimCVhk-1DuTPjJgGUHedlBXnaQl53k9Zm7Y6ZExH9-rIRUiRJ_dWlqjg</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Tsui, Yee Kin</creator><creator>Moseley, Dominic</creator><creator>Dennis, A. R.</creator><creator>Shi, Yunhua</creator><creator>Beck, Michael</creator><creator>Cientanni, Vito</creator><creator>Cardwell, David</creator><creator>Durrell, John</creator><creator>Ainslie, Mark</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7673-0024</orcidid><orcidid>https://orcid.org/0000-0003-4476-3803</orcidid><orcidid>https://orcid.org/0000-0002-2020-2131</orcidid><orcidid>https://orcid.org/0000-0003-0466-3680</orcidid><orcidid>https://orcid.org/0000-0003-0712-3102</orcidid></search><sort><creationdate>20220601</creationdate><title>Waveform Control Pulsed Field Magnetization of RE-Ba-Cu-O Bulk Superconducting Rings</title><author>Tsui, Yee Kin ; Moseley, Dominic ; Dennis, A. R. ; Shi, Yunhua ; Beck, Michael ; Cientanni, Vito ; Cardwell, David ; Durrell, John ; Ainslie, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-7b0c8ef592cd8d02a759dd4e8c10ba3e0468e0b56bcde416ecf2e55f5b5e77483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>bulk superconducting rings</topic><topic>bulk superconductors</topic><topic>Circuits</topic><topic>High-temperature superconductivity</topic><topic>High-temperature superconductors</topic><topic>Insulated gate bipolar transistors</topic><topic>Magnetic field measurement</topic><topic>Magnetic flux</topic><topic>Magnetic resonance imaging</topic><topic>Magnetism</topic><topic>Magnetization</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Optimization</topic><topic>Permanent magnets</topic><topic>pulsed field magnetization</topic><topic>Semiconductor devices</topic><topic>Superconducting magnets</topic><topic>Superconductivity</topic><topic>Superconductors</topic><topic>Switching</topic><topic>trapped field magnets</topic><topic>Voltage measurement</topic><topic>waveform control</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsui, Yee Kin</creatorcontrib><creatorcontrib>Moseley, Dominic</creatorcontrib><creatorcontrib>Dennis, A. R.</creatorcontrib><creatorcontrib>Shi, Yunhua</creatorcontrib><creatorcontrib>Beck, Michael</creatorcontrib><creatorcontrib>Cientanni, Vito</creatorcontrib><creatorcontrib>Cardwell, David</creatorcontrib><creatorcontrib>Durrell, John</creatorcontrib><creatorcontrib>Ainslie, Mark</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tsui, Yee Kin</au><au>Moseley, Dominic</au><au>Dennis, A. R.</au><au>Shi, Yunhua</au><au>Beck, Michael</au><au>Cientanni, Vito</au><au>Cardwell, David</au><au>Durrell, John</au><au>Ainslie, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Waveform Control Pulsed Field Magnetization of RE-Ba-Cu-O Bulk Superconducting Rings</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>32</volume><issue>4</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>One of the potential applications of ring-shaped, single grain RE-Ba-Cu-O bulk superconductors is in desktop magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) systems as an alternative to conventional permanent magnets. The higher magnetic field available from magnetized bulk superconductors could significantly improve the performance of such systems, as well as reduce their size and increase portability. The pulsed field magnetization (PFM) method provides a fast, compact and cost-effective method for magnetizing these materials as trapped field magnets. However, bulk superconducting rings are very susceptible to thermomagnetic instabilities during the PFM process, and thus, to date, the reported trapped fields in ring bulks magnetized by PFM are less than 0.35 T at the centre of single rings. In this work, we demonstrate that the trapped field in a superconducting ring bulk can be enhanced significantly by optimizing the waveform of the magnetizing pulse used in the PFM method. This optimization can be achieved easily by using an Insulated Gate Bipolar Transistor as a fast-switching device with a controllable switching frequency in the pulse-generating electric circuit. Our findings represent a key step forward in utilizing bulk, single-grain superconducting rings magnetized by PFM in portable magnet systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2021.3132553</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7673-0024</orcidid><orcidid>https://orcid.org/0000-0003-4476-3803</orcidid><orcidid>https://orcid.org/0000-0002-2020-2131</orcidid><orcidid>https://orcid.org/0000-0003-0466-3680</orcidid><orcidid>https://orcid.org/0000-0003-0712-3102</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2022-06, Vol.32 (4), p.1-5 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TASC_2021_3132553 |
source | IEEE Electronic Library (IEL) |
subjects | bulk superconducting rings bulk superconductors Circuits High-temperature superconductivity High-temperature superconductors Insulated gate bipolar transistors Magnetic field measurement Magnetic flux Magnetic resonance imaging Magnetism Magnetization NMR Nuclear magnetic resonance Optimization Permanent magnets pulsed field magnetization Semiconductor devices Superconducting magnets Superconductivity Superconductors Switching trapped field magnets Voltage measurement waveform control Waveforms |
title | Waveform Control Pulsed Field Magnetization of RE-Ba-Cu-O Bulk Superconducting Rings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A11%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Waveform%20Control%20Pulsed%20Field%20Magnetization%20of%20RE-Ba-Cu-O%20Bulk%20Superconducting%20Rings&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Tsui,%20Yee%20Kin&rft.date=2022-06-01&rft.volume=32&rft.issue=4&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2021.3132553&rft_dat=%3Cproquest_RIE%3E2610171613%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610171613&rft_id=info:pmid/&rft_ieee_id=9635676&rfr_iscdi=true |