Ultra-Thin Solenoid and Cryostat Development for Novel Detector Magnets

In the scope of the Future Circular electron positron Collider study (FCC-ee), the IDEA detector is developed. It comprises a superconducting solenoid with free bore of 4 m, 6 m long and a central magnetic field of 2 T. The positioning of the magnet between the inner tracker and the electronic calor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2021-08, Vol.31 (5), p.1-5
Hauptverfasser: Ilardi, Veronica, Silva, Helder F. P., Kulenkampff, Tobias, Dudarev, Alexey, de Sousa, Patricia Borges, Mentink, Matthias, Dhalle, Marc, Kate, Herman H. J. Ten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 5
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 31
creator Ilardi, Veronica
Silva, Helder F. P.
Kulenkampff, Tobias
Dudarev, Alexey
de Sousa, Patricia Borges
Mentink, Matthias
Dhalle, Marc
Kate, Herman H. J. Ten
description In the scope of the Future Circular electron positron Collider study (FCC-ee), the IDEA detector is developed. It comprises a superconducting solenoid with free bore of 4 m, 6 m long and a central magnetic field of 2 T. The positioning of the magnet between the inner tracker and the electronic calorimeter heavily constrains the magnet design, as it is required to have the lowest possible radiation length, so minimum thickness and lowest density material. With respect to the classical solution of a solenoid enclosing the calorimeters, a cost reduction of about 50% is expected due to size reduction. An optimization of the different components of the magnet system has been carried out, resulting in the development of a new composite high-strength conductor that can be used to build a 30 mm thin solenoid. The quench analysis of the solenoid will be presented as it is of critical importance given the high energy density in the magnet of 21 kJ/kg. A cryostat made of concentric aluminium shells would account for about 50% of the radiation length of the magnet and most of this material is used in the outer vacuum shell of the cryostat to prevent buckling. In order to further reduce the radiation length, two fundamentally different approaches are being analysed. The first method focuses on reducing drastically the outer shell thickness. This leads to use honeycomb composites, reinforcing bars and corrugated shells for the outer shell of the cryostat. The second approach consists of supporting very thin cryostat shells directly on the solenoid cold mass using proper support. This can be achieved by replacing the thick walls and MLI insulation by a material that can sustain 1 atm while having low radiation length and low thermal conductivity. Cryogel Z has shown promising properties and its suitability for this project is being analysed. This novel approach has never been used so far for superconducting magnets.
doi_str_mv 10.1109/TASC.2021.3057840
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TASC_2021_3057840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9350162</ieee_id><sourcerecordid>2498672927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-6b2253039362d8d7b787352672f6aac117f387933203fcee6b1e64f4c3234a6d3</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EEuXxAxCXSJxT7HX8yLEKUJAKHNqeLTfZQKo0LraL1H-Pq1acdmc1Myt9hNwxOmaMlo-LybwaAwU25lQoXdAzMmJC6BwEE-dpp4LlGoBfkqsQ1pSyQhdiRKbLPnqbL767IZu7HgfXNZkdmqzyexeijdkT_mLvthscYtY6n324pNM1Yh2TfLdfA8ZwQy5a2we8Pc1rsnx5XlSv-exz-lZNZnnNOcRcrgAEp7zkEhrdqJXSiguQClppbc2YarlWZfJS3taIcsVQFm1Rc-CFlQ2_Jg_H3q13PzsM0azdzg_ppYGi1KmoBJVc7OiqvQvBY2u2vttYvzeMmgMvc-BlDrzMiVfK3B8zHSL--0suKJPA_wDhfmTm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2498672927</pqid></control><display><type>article</type><title>Ultra-Thin Solenoid and Cryostat Development for Novel Detector Magnets</title><source>IEEE Electronic Library (IEL)</source><creator>Ilardi, Veronica ; Silva, Helder F. P. ; Kulenkampff, Tobias ; Dudarev, Alexey ; de Sousa, Patricia Borges ; Mentink, Matthias ; Dhalle, Marc ; Kate, Herman H. J. Ten</creator><creatorcontrib>Ilardi, Veronica ; Silva, Helder F. P. ; Kulenkampff, Tobias ; Dudarev, Alexey ; de Sousa, Patricia Borges ; Mentink, Matthias ; Dhalle, Marc ; Kate, Herman H. J. Ten</creatorcontrib><description>In the scope of the Future Circular electron positron Collider study (FCC-ee), the IDEA detector is developed. It comprises a superconducting solenoid with free bore of 4 m, 6 m long and a central magnetic field of 2 T. The positioning of the magnet between the inner tracker and the electronic calorimeter heavily constrains the magnet design, as it is required to have the lowest possible radiation length, so minimum thickness and lowest density material. With respect to the classical solution of a solenoid enclosing the calorimeters, a cost reduction of about 50% is expected due to size reduction. An optimization of the different components of the magnet system has been carried out, resulting in the development of a new composite high-strength conductor that can be used to build a 30 mm thin solenoid. The quench analysis of the solenoid will be presented as it is of critical importance given the high energy density in the magnet of 21 kJ/kg. A cryostat made of concentric aluminium shells would account for about 50% of the radiation length of the magnet and most of this material is used in the outer vacuum shell of the cryostat to prevent buckling. In order to further reduce the radiation length, two fundamentally different approaches are being analysed. The first method focuses on reducing drastically the outer shell thickness. This leads to use honeycomb composites, reinforcing bars and corrugated shells for the outer shell of the cryostat. The second approach consists of supporting very thin cryostat shells directly on the solenoid cold mass using proper support. This can be achieved by replacing the thick walls and MLI insulation by a material that can sustain 1 atm while having low radiation length and low thermal conductivity. Cryogel Z has shown promising properties and its suitability for this project is being analysed. This novel approach has never been used so far for superconducting magnets.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2021.3057840</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aluminum ; Cold Mass ; Conductors ; Corrugated shells ; Cryostat ; Detector Magnet ; Detectors ; FCC ; Flux density ; Insulation ; Metals ; Optimization ; Radiation Transparent ; Rebar ; Size reduction ; Solenoids ; Superconducting magnets ; Superconducting Solenoid ; Superconductivity ; Thermal conductivity ; Thick walls ; Thickness ; Ultra-thin ; Welding</subject><ispartof>IEEE transactions on applied superconductivity, 2021-08, Vol.31 (5), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-6b2253039362d8d7b787352672f6aac117f387933203fcee6b1e64f4c3234a6d3</citedby><cites>FETCH-LOGICAL-c332t-6b2253039362d8d7b787352672f6aac117f387933203fcee6b1e64f4c3234a6d3</cites><orcidid>0000-0002-1802-2959 ; 0000-0001-9769-0578 ; 0000-0001-5597-3190 ; 0000-0002-8713-8162 ; 0000-0001-7424-8189 ; 0000-0001-9610-9905 ; 0000-0002-3654-7484</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9350162$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9350162$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ilardi, Veronica</creatorcontrib><creatorcontrib>Silva, Helder F. P.</creatorcontrib><creatorcontrib>Kulenkampff, Tobias</creatorcontrib><creatorcontrib>Dudarev, Alexey</creatorcontrib><creatorcontrib>de Sousa, Patricia Borges</creatorcontrib><creatorcontrib>Mentink, Matthias</creatorcontrib><creatorcontrib>Dhalle, Marc</creatorcontrib><creatorcontrib>Kate, Herman H. J. Ten</creatorcontrib><title>Ultra-Thin Solenoid and Cryostat Development for Novel Detector Magnets</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>In the scope of the Future Circular electron positron Collider study (FCC-ee), the IDEA detector is developed. It comprises a superconducting solenoid with free bore of 4 m, 6 m long and a central magnetic field of 2 T. The positioning of the magnet between the inner tracker and the electronic calorimeter heavily constrains the magnet design, as it is required to have the lowest possible radiation length, so minimum thickness and lowest density material. With respect to the classical solution of a solenoid enclosing the calorimeters, a cost reduction of about 50% is expected due to size reduction. An optimization of the different components of the magnet system has been carried out, resulting in the development of a new composite high-strength conductor that can be used to build a 30 mm thin solenoid. The quench analysis of the solenoid will be presented as it is of critical importance given the high energy density in the magnet of 21 kJ/kg. A cryostat made of concentric aluminium shells would account for about 50% of the radiation length of the magnet and most of this material is used in the outer vacuum shell of the cryostat to prevent buckling. In order to further reduce the radiation length, two fundamentally different approaches are being analysed. The first method focuses on reducing drastically the outer shell thickness. This leads to use honeycomb composites, reinforcing bars and corrugated shells for the outer shell of the cryostat. The second approach consists of supporting very thin cryostat shells directly on the solenoid cold mass using proper support. This can be achieved by replacing the thick walls and MLI insulation by a material that can sustain 1 atm while having low radiation length and low thermal conductivity. Cryogel Z has shown promising properties and its suitability for this project is being analysed. This novel approach has never been used so far for superconducting magnets.</description><subject>Aluminum</subject><subject>Cold Mass</subject><subject>Conductors</subject><subject>Corrugated shells</subject><subject>Cryostat</subject><subject>Detector Magnet</subject><subject>Detectors</subject><subject>FCC</subject><subject>Flux density</subject><subject>Insulation</subject><subject>Metals</subject><subject>Optimization</subject><subject>Radiation Transparent</subject><subject>Rebar</subject><subject>Size reduction</subject><subject>Solenoids</subject><subject>Superconducting magnets</subject><subject>Superconducting Solenoid</subject><subject>Superconductivity</subject><subject>Thermal conductivity</subject><subject>Thick walls</subject><subject>Thickness</subject><subject>Ultra-thin</subject><subject>Welding</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPwzAQhC0EEuXxAxCXSJxT7HX8yLEKUJAKHNqeLTfZQKo0LraL1H-Pq1acdmc1Myt9hNwxOmaMlo-LybwaAwU25lQoXdAzMmJC6BwEE-dpp4LlGoBfkqsQ1pSyQhdiRKbLPnqbL767IZu7HgfXNZkdmqzyexeijdkT_mLvthscYtY6n324pNM1Yh2TfLdfA8ZwQy5a2we8Pc1rsnx5XlSv-exz-lZNZnnNOcRcrgAEp7zkEhrdqJXSiguQClppbc2YarlWZfJS3taIcsVQFm1Rc-CFlQ2_Jg_H3q13PzsM0azdzg_ppYGi1KmoBJVc7OiqvQvBY2u2vttYvzeMmgMvc-BlDrzMiVfK3B8zHSL--0suKJPA_wDhfmTm</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Ilardi, Veronica</creator><creator>Silva, Helder F. P.</creator><creator>Kulenkampff, Tobias</creator><creator>Dudarev, Alexey</creator><creator>de Sousa, Patricia Borges</creator><creator>Mentink, Matthias</creator><creator>Dhalle, Marc</creator><creator>Kate, Herman H. J. Ten</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1802-2959</orcidid><orcidid>https://orcid.org/0000-0001-9769-0578</orcidid><orcidid>https://orcid.org/0000-0001-5597-3190</orcidid><orcidid>https://orcid.org/0000-0002-8713-8162</orcidid><orcidid>https://orcid.org/0000-0001-7424-8189</orcidid><orcidid>https://orcid.org/0000-0001-9610-9905</orcidid><orcidid>https://orcid.org/0000-0002-3654-7484</orcidid></search><sort><creationdate>20210801</creationdate><title>Ultra-Thin Solenoid and Cryostat Development for Novel Detector Magnets</title><author>Ilardi, Veronica ; Silva, Helder F. P. ; Kulenkampff, Tobias ; Dudarev, Alexey ; de Sousa, Patricia Borges ; Mentink, Matthias ; Dhalle, Marc ; Kate, Herman H. J. Ten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-6b2253039362d8d7b787352672f6aac117f387933203fcee6b1e64f4c3234a6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum</topic><topic>Cold Mass</topic><topic>Conductors</topic><topic>Corrugated shells</topic><topic>Cryostat</topic><topic>Detector Magnet</topic><topic>Detectors</topic><topic>FCC</topic><topic>Flux density</topic><topic>Insulation</topic><topic>Metals</topic><topic>Optimization</topic><topic>Radiation Transparent</topic><topic>Rebar</topic><topic>Size reduction</topic><topic>Solenoids</topic><topic>Superconducting magnets</topic><topic>Superconducting Solenoid</topic><topic>Superconductivity</topic><topic>Thermal conductivity</topic><topic>Thick walls</topic><topic>Thickness</topic><topic>Ultra-thin</topic><topic>Welding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ilardi, Veronica</creatorcontrib><creatorcontrib>Silva, Helder F. P.</creatorcontrib><creatorcontrib>Kulenkampff, Tobias</creatorcontrib><creatorcontrib>Dudarev, Alexey</creatorcontrib><creatorcontrib>de Sousa, Patricia Borges</creatorcontrib><creatorcontrib>Mentink, Matthias</creatorcontrib><creatorcontrib>Dhalle, Marc</creatorcontrib><creatorcontrib>Kate, Herman H. J. Ten</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ilardi, Veronica</au><au>Silva, Helder F. P.</au><au>Kulenkampff, Tobias</au><au>Dudarev, Alexey</au><au>de Sousa, Patricia Borges</au><au>Mentink, Matthias</au><au>Dhalle, Marc</au><au>Kate, Herman H. J. Ten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-Thin Solenoid and Cryostat Development for Novel Detector Magnets</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>31</volume><issue>5</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>In the scope of the Future Circular electron positron Collider study (FCC-ee), the IDEA detector is developed. It comprises a superconducting solenoid with free bore of 4 m, 6 m long and a central magnetic field of 2 T. The positioning of the magnet between the inner tracker and the electronic calorimeter heavily constrains the magnet design, as it is required to have the lowest possible radiation length, so minimum thickness and lowest density material. With respect to the classical solution of a solenoid enclosing the calorimeters, a cost reduction of about 50% is expected due to size reduction. An optimization of the different components of the magnet system has been carried out, resulting in the development of a new composite high-strength conductor that can be used to build a 30 mm thin solenoid. The quench analysis of the solenoid will be presented as it is of critical importance given the high energy density in the magnet of 21 kJ/kg. A cryostat made of concentric aluminium shells would account for about 50% of the radiation length of the magnet and most of this material is used in the outer vacuum shell of the cryostat to prevent buckling. In order to further reduce the radiation length, two fundamentally different approaches are being analysed. The first method focuses on reducing drastically the outer shell thickness. This leads to use honeycomb composites, reinforcing bars and corrugated shells for the outer shell of the cryostat. The second approach consists of supporting very thin cryostat shells directly on the solenoid cold mass using proper support. This can be achieved by replacing the thick walls and MLI insulation by a material that can sustain 1 atm while having low radiation length and low thermal conductivity. Cryogel Z has shown promising properties and its suitability for this project is being analysed. This novel approach has never been used so far for superconducting magnets.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2021.3057840</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-1802-2959</orcidid><orcidid>https://orcid.org/0000-0001-9769-0578</orcidid><orcidid>https://orcid.org/0000-0001-5597-3190</orcidid><orcidid>https://orcid.org/0000-0002-8713-8162</orcidid><orcidid>https://orcid.org/0000-0001-7424-8189</orcidid><orcidid>https://orcid.org/0000-0001-9610-9905</orcidid><orcidid>https://orcid.org/0000-0002-3654-7484</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2021-08, Vol.31 (5), p.1-5
issn 1051-8223
1558-2515
language eng
recordid cdi_crossref_primary_10_1109_TASC_2021_3057840
source IEEE Electronic Library (IEL)
subjects Aluminum
Cold Mass
Conductors
Corrugated shells
Cryostat
Detector Magnet
Detectors
FCC
Flux density
Insulation
Metals
Optimization
Radiation Transparent
Rebar
Size reduction
Solenoids
Superconducting magnets
Superconducting Solenoid
Superconductivity
Thermal conductivity
Thick walls
Thickness
Ultra-thin
Welding
title Ultra-Thin Solenoid and Cryostat Development for Novel Detector Magnets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T23%3A04%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-Thin%20Solenoid%20and%20Cryostat%20Development%20for%20Novel%20Detector%20Magnets&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Ilardi,%20Veronica&rft.date=2021-08-01&rft.volume=31&rft.issue=5&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2021.3057840&rft_dat=%3Cproquest_RIE%3E2498672927%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2498672927&rft_id=info:pmid/&rft_ieee_id=9350162&rfr_iscdi=true