Superconducting Synchronous Motors for Electric Ship Propulsion

This paper develops a notional design for a 36 MW, 120 rpm motor for ship propulsion. The design exhibits high torque density (66 Nm/kg) and high efficiency (99%). This synchronous motor uses LTS (low temperature superconducting) field coils to create a minimum of 2 T magnetic field in the air gap o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2020-06, Vol.30 (4), p.1-8
Hauptverfasser: Torrey, David, Parizh, Michael, Bray, James, Stautner, Wolfgang, Tapadia, Nidhishri, Xu, Minfeng, Wu, Anbo, Zierer, Joseph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 4
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 30
creator Torrey, David
Parizh, Michael
Bray, James
Stautner, Wolfgang
Tapadia, Nidhishri
Xu, Minfeng
Wu, Anbo
Zierer, Joseph
description This paper develops a notional design for a 36 MW, 120 rpm motor for ship propulsion. The design exhibits high torque density (66 Nm/kg) and high efficiency (99%). This synchronous motor uses LTS (low temperature superconducting) field coils to create a minimum of 2 T magnetic field in the air gap of the motor. The motor is substantially lighter, more compact, and far more cost effective than other compared approaches. A significant feature of the LTS motor is reduction in radial forces between the field and armature by two orders of magnitude compared to a conventional motor. The motor promises significant cost and performance improvement. Conductor requirements, options, and electromagnetic features such as quench protection and cryogenic support options are discussed.
doi_str_mv 10.1109/TASC.2020.2980844
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TASC_2020_2980844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9042245</ieee_id><sourcerecordid>2389364086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-efe4b2c8df3c8f9f44177cd25352f43dfebb0612a2de76f4d82d87f314abf1553</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7dnZ1NNicppVWhopB6XpL9sCk1G3eTQ_-9KS2eZg7P-w7zEHLP6IwxWjxt5uViBhToDApJJeIFmTAhZAqCictxp4KlEoBfk5sYd5QylCgm5LkcOhu0b82g-6b9TspDq7fBt36IybvvfYiJ8yFZ7q3uQ6OTctt0yWfw3bCPjW9vyZWr9tHeneeUfK2Wm8Vruv54eVvM16mGgvepdRZr0NI4rqUrHCLLc21AcAEOuXG2rmnGoAJj88yhkWBk7jjDqnbjH3xKHk-9XfC_g4292vkhtONJBVwWPEMqs5FiJ0oHH2OwTnWh-anCQTGqjp7U0ZM6elJnT2Pm4ZRprLX_fEERAAX_A1bKZKY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389364086</pqid></control><display><type>article</type><title>Superconducting Synchronous Motors for Electric Ship Propulsion</title><source>IEEE/IET Electronic Library</source><creator>Torrey, David ; Parizh, Michael ; Bray, James ; Stautner, Wolfgang ; Tapadia, Nidhishri ; Xu, Minfeng ; Wu, Anbo ; Zierer, Joseph</creator><creatorcontrib>Torrey, David ; Parizh, Michael ; Bray, James ; Stautner, Wolfgang ; Tapadia, Nidhishri ; Xu, Minfeng ; Wu, Anbo ; Zierer, Joseph</creatorcontrib><description>This paper develops a notional design for a 36 MW, 120 rpm motor for ship propulsion. The design exhibits high torque density (66 Nm/kg) and high efficiency (99%). This synchronous motor uses LTS (low temperature superconducting) field coils to create a minimum of 2 T magnetic field in the air gap of the motor. The motor is substantially lighter, more compact, and far more cost effective than other compared approaches. A significant feature of the LTS motor is reduction in radial forces between the field and armature by two orders of magnitude compared to a conventional motor. The motor promises significant cost and performance improvement. Conductor requirements, options, and electromagnetic features such as quench protection and cryogenic support options are discussed.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2020.2980844</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Air gaps ; Conductors ; Cryogenic quenching ; Field coils ; High-temperature superconductors ; Low temperature ; low temperature superconductor ; Marine propulsion ; Permanent magnet motors ; Superconducting coils ; Superconducting magnets ; superconducting motors ; Superconductivity ; Synchronous motors</subject><ispartof>IEEE transactions on applied superconductivity, 2020-06, Vol.30 (4), p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-efe4b2c8df3c8f9f44177cd25352f43dfebb0612a2de76f4d82d87f314abf1553</citedby><cites>FETCH-LOGICAL-c293t-efe4b2c8df3c8f9f44177cd25352f43dfebb0612a2de76f4d82d87f314abf1553</cites><orcidid>0000-0001-6971-9468 ; 0000-0002-2737-8578 ; 0000-0002-8139-0244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9042245$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9042245$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Torrey, David</creatorcontrib><creatorcontrib>Parizh, Michael</creatorcontrib><creatorcontrib>Bray, James</creatorcontrib><creatorcontrib>Stautner, Wolfgang</creatorcontrib><creatorcontrib>Tapadia, Nidhishri</creatorcontrib><creatorcontrib>Xu, Minfeng</creatorcontrib><creatorcontrib>Wu, Anbo</creatorcontrib><creatorcontrib>Zierer, Joseph</creatorcontrib><title>Superconducting Synchronous Motors for Electric Ship Propulsion</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>This paper develops a notional design for a 36 MW, 120 rpm motor for ship propulsion. The design exhibits high torque density (66 Nm/kg) and high efficiency (99%). This synchronous motor uses LTS (low temperature superconducting) field coils to create a minimum of 2 T magnetic field in the air gap of the motor. The motor is substantially lighter, more compact, and far more cost effective than other compared approaches. A significant feature of the LTS motor is reduction in radial forces between the field and armature by two orders of magnitude compared to a conventional motor. The motor promises significant cost and performance improvement. Conductor requirements, options, and electromagnetic features such as quench protection and cryogenic support options are discussed.</description><subject>Air gaps</subject><subject>Conductors</subject><subject>Cryogenic quenching</subject><subject>Field coils</subject><subject>High-temperature superconductors</subject><subject>Low temperature</subject><subject>low temperature superconductor</subject><subject>Marine propulsion</subject><subject>Permanent magnet motors</subject><subject>Superconducting coils</subject><subject>Superconducting magnets</subject><subject>superconducting motors</subject><subject>Superconductivity</subject><subject>Synchronous motors</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7dnZ1NNicppVWhopB6XpL9sCk1G3eTQ_-9KS2eZg7P-w7zEHLP6IwxWjxt5uViBhToDApJJeIFmTAhZAqCictxp4KlEoBfk5sYd5QylCgm5LkcOhu0b82g-6b9TspDq7fBt36IybvvfYiJ8yFZ7q3uQ6OTctt0yWfw3bCPjW9vyZWr9tHeneeUfK2Wm8Vruv54eVvM16mGgvepdRZr0NI4rqUrHCLLc21AcAEOuXG2rmnGoAJj88yhkWBk7jjDqnbjH3xKHk-9XfC_g4292vkhtONJBVwWPEMqs5FiJ0oHH2OwTnWh-anCQTGqjp7U0ZM6elJnT2Pm4ZRprLX_fEERAAX_A1bKZKY</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Torrey, David</creator><creator>Parizh, Michael</creator><creator>Bray, James</creator><creator>Stautner, Wolfgang</creator><creator>Tapadia, Nidhishri</creator><creator>Xu, Minfeng</creator><creator>Wu, Anbo</creator><creator>Zierer, Joseph</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6971-9468</orcidid><orcidid>https://orcid.org/0000-0002-2737-8578</orcidid><orcidid>https://orcid.org/0000-0002-8139-0244</orcidid></search><sort><creationdate>20200601</creationdate><title>Superconducting Synchronous Motors for Electric Ship Propulsion</title><author>Torrey, David ; Parizh, Michael ; Bray, James ; Stautner, Wolfgang ; Tapadia, Nidhishri ; Xu, Minfeng ; Wu, Anbo ; Zierer, Joseph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-efe4b2c8df3c8f9f44177cd25352f43dfebb0612a2de76f4d82d87f314abf1553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Air gaps</topic><topic>Conductors</topic><topic>Cryogenic quenching</topic><topic>Field coils</topic><topic>High-temperature superconductors</topic><topic>Low temperature</topic><topic>low temperature superconductor</topic><topic>Marine propulsion</topic><topic>Permanent magnet motors</topic><topic>Superconducting coils</topic><topic>Superconducting magnets</topic><topic>superconducting motors</topic><topic>Superconductivity</topic><topic>Synchronous motors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torrey, David</creatorcontrib><creatorcontrib>Parizh, Michael</creatorcontrib><creatorcontrib>Bray, James</creatorcontrib><creatorcontrib>Stautner, Wolfgang</creatorcontrib><creatorcontrib>Tapadia, Nidhishri</creatorcontrib><creatorcontrib>Xu, Minfeng</creatorcontrib><creatorcontrib>Wu, Anbo</creatorcontrib><creatorcontrib>Zierer, Joseph</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Torrey, David</au><au>Parizh, Michael</au><au>Bray, James</au><au>Stautner, Wolfgang</au><au>Tapadia, Nidhishri</au><au>Xu, Minfeng</au><au>Wu, Anbo</au><au>Zierer, Joseph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superconducting Synchronous Motors for Electric Ship Propulsion</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>30</volume><issue>4</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>This paper develops a notional design for a 36 MW, 120 rpm motor for ship propulsion. The design exhibits high torque density (66 Nm/kg) and high efficiency (99%). This synchronous motor uses LTS (low temperature superconducting) field coils to create a minimum of 2 T magnetic field in the air gap of the motor. The motor is substantially lighter, more compact, and far more cost effective than other compared approaches. A significant feature of the LTS motor is reduction in radial forces between the field and armature by two orders of magnitude compared to a conventional motor. The motor promises significant cost and performance improvement. Conductor requirements, options, and electromagnetic features such as quench protection and cryogenic support options are discussed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2020.2980844</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6971-9468</orcidid><orcidid>https://orcid.org/0000-0002-2737-8578</orcidid><orcidid>https://orcid.org/0000-0002-8139-0244</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2020-06, Vol.30 (4), p.1-8
issn 1051-8223
1558-2515
language eng
recordid cdi_crossref_primary_10_1109_TASC_2020_2980844
source IEEE/IET Electronic Library
subjects Air gaps
Conductors
Cryogenic quenching
Field coils
High-temperature superconductors
Low temperature
low temperature superconductor
Marine propulsion
Permanent magnet motors
Superconducting coils
Superconducting magnets
superconducting motors
Superconductivity
Synchronous motors
title Superconducting Synchronous Motors for Electric Ship Propulsion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superconducting%20Synchronous%20Motors%20for%20Electric%20Ship%20Propulsion&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Torrey,%20David&rft.date=2020-06-01&rft.volume=30&rft.issue=4&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2020.2980844&rft_dat=%3Cproquest_RIE%3E2389364086%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389364086&rft_id=info:pmid/&rft_ieee_id=9042245&rfr_iscdi=true