Superconducting Synchronous Motors for Electric Ship Propulsion
This paper develops a notional design for a 36 MW, 120 rpm motor for ship propulsion. The design exhibits high torque density (66 Nm/kg) and high efficiency (99%). This synchronous motor uses LTS (low temperature superconducting) field coils to create a minimum of 2 T magnetic field in the air gap o...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2020-06, Vol.30 (4), p.1-8 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 30 |
creator | Torrey, David Parizh, Michael Bray, James Stautner, Wolfgang Tapadia, Nidhishri Xu, Minfeng Wu, Anbo Zierer, Joseph |
description | This paper develops a notional design for a 36 MW, 120 rpm motor for ship propulsion. The design exhibits high torque density (66 Nm/kg) and high efficiency (99%). This synchronous motor uses LTS (low temperature superconducting) field coils to create a minimum of 2 T magnetic field in the air gap of the motor. The motor is substantially lighter, more compact, and far more cost effective than other compared approaches. A significant feature of the LTS motor is reduction in radial forces between the field and armature by two orders of magnitude compared to a conventional motor. The motor promises significant cost and performance improvement. Conductor requirements, options, and electromagnetic features such as quench protection and cryogenic support options are discussed. |
doi_str_mv | 10.1109/TASC.2020.2980844 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TASC_2020_2980844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9042245</ieee_id><sourcerecordid>2389364086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-efe4b2c8df3c8f9f44177cd25352f43dfebb0612a2de76f4d82d87f314abf1553</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7dnZ1NNicppVWhopB6XpL9sCk1G3eTQ_-9KS2eZg7P-w7zEHLP6IwxWjxt5uViBhToDApJJeIFmTAhZAqCictxp4KlEoBfk5sYd5QylCgm5LkcOhu0b82g-6b9TspDq7fBt36IybvvfYiJ8yFZ7q3uQ6OTctt0yWfw3bCPjW9vyZWr9tHeneeUfK2Wm8Vruv54eVvM16mGgvepdRZr0NI4rqUrHCLLc21AcAEOuXG2rmnGoAJj88yhkWBk7jjDqnbjH3xKHk-9XfC_g4292vkhtONJBVwWPEMqs5FiJ0oHH2OwTnWh-anCQTGqjp7U0ZM6elJnT2Pm4ZRprLX_fEERAAX_A1bKZKY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389364086</pqid></control><display><type>article</type><title>Superconducting Synchronous Motors for Electric Ship Propulsion</title><source>IEEE/IET Electronic Library</source><creator>Torrey, David ; Parizh, Michael ; Bray, James ; Stautner, Wolfgang ; Tapadia, Nidhishri ; Xu, Minfeng ; Wu, Anbo ; Zierer, Joseph</creator><creatorcontrib>Torrey, David ; Parizh, Michael ; Bray, James ; Stautner, Wolfgang ; Tapadia, Nidhishri ; Xu, Minfeng ; Wu, Anbo ; Zierer, Joseph</creatorcontrib><description>This paper develops a notional design for a 36 MW, 120 rpm motor for ship propulsion. The design exhibits high torque density (66 Nm/kg) and high efficiency (99%). This synchronous motor uses LTS (low temperature superconducting) field coils to create a minimum of 2 T magnetic field in the air gap of the motor. The motor is substantially lighter, more compact, and far more cost effective than other compared approaches. A significant feature of the LTS motor is reduction in radial forces between the field and armature by two orders of magnitude compared to a conventional motor. The motor promises significant cost and performance improvement. Conductor requirements, options, and electromagnetic features such as quench protection and cryogenic support options are discussed.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2020.2980844</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Air gaps ; Conductors ; Cryogenic quenching ; Field coils ; High-temperature superconductors ; Low temperature ; low temperature superconductor ; Marine propulsion ; Permanent magnet motors ; Superconducting coils ; Superconducting magnets ; superconducting motors ; Superconductivity ; Synchronous motors</subject><ispartof>IEEE transactions on applied superconductivity, 2020-06, Vol.30 (4), p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-efe4b2c8df3c8f9f44177cd25352f43dfebb0612a2de76f4d82d87f314abf1553</citedby><cites>FETCH-LOGICAL-c293t-efe4b2c8df3c8f9f44177cd25352f43dfebb0612a2de76f4d82d87f314abf1553</cites><orcidid>0000-0001-6971-9468 ; 0000-0002-2737-8578 ; 0000-0002-8139-0244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9042245$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9042245$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Torrey, David</creatorcontrib><creatorcontrib>Parizh, Michael</creatorcontrib><creatorcontrib>Bray, James</creatorcontrib><creatorcontrib>Stautner, Wolfgang</creatorcontrib><creatorcontrib>Tapadia, Nidhishri</creatorcontrib><creatorcontrib>Xu, Minfeng</creatorcontrib><creatorcontrib>Wu, Anbo</creatorcontrib><creatorcontrib>Zierer, Joseph</creatorcontrib><title>Superconducting Synchronous Motors for Electric Ship Propulsion</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>This paper develops a notional design for a 36 MW, 120 rpm motor for ship propulsion. The design exhibits high torque density (66 Nm/kg) and high efficiency (99%). This synchronous motor uses LTS (low temperature superconducting) field coils to create a minimum of 2 T magnetic field in the air gap of the motor. The motor is substantially lighter, more compact, and far more cost effective than other compared approaches. A significant feature of the LTS motor is reduction in radial forces between the field and armature by two orders of magnitude compared to a conventional motor. The motor promises significant cost and performance improvement. Conductor requirements, options, and electromagnetic features such as quench protection and cryogenic support options are discussed.</description><subject>Air gaps</subject><subject>Conductors</subject><subject>Cryogenic quenching</subject><subject>Field coils</subject><subject>High-temperature superconductors</subject><subject>Low temperature</subject><subject>low temperature superconductor</subject><subject>Marine propulsion</subject><subject>Permanent magnet motors</subject><subject>Superconducting coils</subject><subject>Superconducting magnets</subject><subject>superconducting motors</subject><subject>Superconductivity</subject><subject>Synchronous motors</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7dnZ1NNicppVWhopB6XpL9sCk1G3eTQ_-9KS2eZg7P-w7zEHLP6IwxWjxt5uViBhToDApJJeIFmTAhZAqCictxp4KlEoBfk5sYd5QylCgm5LkcOhu0b82g-6b9TspDq7fBt36IybvvfYiJ8yFZ7q3uQ6OTctt0yWfw3bCPjW9vyZWr9tHeneeUfK2Wm8Vruv54eVvM16mGgvepdRZr0NI4rqUrHCLLc21AcAEOuXG2rmnGoAJj88yhkWBk7jjDqnbjH3xKHk-9XfC_g4292vkhtONJBVwWPEMqs5FiJ0oHH2OwTnWh-anCQTGqjp7U0ZM6elJnT2Pm4ZRprLX_fEERAAX_A1bKZKY</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Torrey, David</creator><creator>Parizh, Michael</creator><creator>Bray, James</creator><creator>Stautner, Wolfgang</creator><creator>Tapadia, Nidhishri</creator><creator>Xu, Minfeng</creator><creator>Wu, Anbo</creator><creator>Zierer, Joseph</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6971-9468</orcidid><orcidid>https://orcid.org/0000-0002-2737-8578</orcidid><orcidid>https://orcid.org/0000-0002-8139-0244</orcidid></search><sort><creationdate>20200601</creationdate><title>Superconducting Synchronous Motors for Electric Ship Propulsion</title><author>Torrey, David ; Parizh, Michael ; Bray, James ; Stautner, Wolfgang ; Tapadia, Nidhishri ; Xu, Minfeng ; Wu, Anbo ; Zierer, Joseph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-efe4b2c8df3c8f9f44177cd25352f43dfebb0612a2de76f4d82d87f314abf1553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Air gaps</topic><topic>Conductors</topic><topic>Cryogenic quenching</topic><topic>Field coils</topic><topic>High-temperature superconductors</topic><topic>Low temperature</topic><topic>low temperature superconductor</topic><topic>Marine propulsion</topic><topic>Permanent magnet motors</topic><topic>Superconducting coils</topic><topic>Superconducting magnets</topic><topic>superconducting motors</topic><topic>Superconductivity</topic><topic>Synchronous motors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torrey, David</creatorcontrib><creatorcontrib>Parizh, Michael</creatorcontrib><creatorcontrib>Bray, James</creatorcontrib><creatorcontrib>Stautner, Wolfgang</creatorcontrib><creatorcontrib>Tapadia, Nidhishri</creatorcontrib><creatorcontrib>Xu, Minfeng</creatorcontrib><creatorcontrib>Wu, Anbo</creatorcontrib><creatorcontrib>Zierer, Joseph</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Torrey, David</au><au>Parizh, Michael</au><au>Bray, James</au><au>Stautner, Wolfgang</au><au>Tapadia, Nidhishri</au><au>Xu, Minfeng</au><au>Wu, Anbo</au><au>Zierer, Joseph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superconducting Synchronous Motors for Electric Ship Propulsion</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>30</volume><issue>4</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>This paper develops a notional design for a 36 MW, 120 rpm motor for ship propulsion. The design exhibits high torque density (66 Nm/kg) and high efficiency (99%). This synchronous motor uses LTS (low temperature superconducting) field coils to create a minimum of 2 T magnetic field in the air gap of the motor. The motor is substantially lighter, more compact, and far more cost effective than other compared approaches. A significant feature of the LTS motor is reduction in radial forces between the field and armature by two orders of magnitude compared to a conventional motor. The motor promises significant cost and performance improvement. Conductor requirements, options, and electromagnetic features such as quench protection and cryogenic support options are discussed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2020.2980844</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6971-9468</orcidid><orcidid>https://orcid.org/0000-0002-2737-8578</orcidid><orcidid>https://orcid.org/0000-0002-8139-0244</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2020-06, Vol.30 (4), p.1-8 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TASC_2020_2980844 |
source | IEEE/IET Electronic Library |
subjects | Air gaps Conductors Cryogenic quenching Field coils High-temperature superconductors Low temperature low temperature superconductor Marine propulsion Permanent magnet motors Superconducting coils Superconducting magnets superconducting motors Superconductivity Synchronous motors |
title | Superconducting Synchronous Motors for Electric Ship Propulsion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superconducting%20Synchronous%20Motors%20for%20Electric%20Ship%20Propulsion&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Torrey,%20David&rft.date=2020-06-01&rft.volume=30&rft.issue=4&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2020.2980844&rft_dat=%3Cproquest_RIE%3E2389364086%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389364086&rft_id=info:pmid/&rft_ieee_id=9042245&rfr_iscdi=true |