Structural Modeling of HTS Cable-in-Conduit Conductor With Helically Slotted Aluminum Core for High-Field Magnet Applications

A structural model has been developed for a Cable-in-Conduit Conductor (CICC) made with 2G HTS superconductors inserted in a helically slotted aluminum core. The cable is particularly suited for high-field applications and consists of a twisted aluminum core and five helical slots. Each slot accommo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2020-06, Vol.30 (4), p.1-5
Hauptverfasser: Pierro, Federica, Zhao, Zijia, Chiesa, Luisa, Celentano, Giuseppe, Marchetti, Marcello, della Corte, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 4
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 30
creator Pierro, Federica
Zhao, Zijia
Chiesa, Luisa
Celentano, Giuseppe
Marchetti, Marcello
della Corte, Antonio
description A structural model has been developed for a Cable-in-Conduit Conductor (CICC) made with 2G HTS superconductors inserted in a helically slotted aluminum core. The cable is particularly suited for high-field applications and consists of a twisted aluminum core and five helical slots. Each slot accommodates a stack of twenty REBCO tapes. The cable is equipped with a central cooling channel and an aluminum jacket. In this work, finite element analysis was used to predict the electrical performance of the cable as a function of the bending diameter. The model consists of three parts: compaction of the aluminum jacket on the slotted core (each slot filled with the HTS stack of tapes), cable's bending and thermal cooldown (from room temperature to 77 K). It was found that the compaction process affects the performance for the top and bottom tapes of the stack. To mitigate this effect, a new design option which includes one structural tape (either copper or stainless steel) on the top and bottom of the stack was evaluated, showing a significant reduction of the strain in those tapes. By adding the strain results generated by the three processes (compaction, bending and cooldown), the normalized critical current was calculated as a function of the bending diameter and compared with experimental data. With a friction coefficient of 0.02 between the tapes, the agreement between model and experimental data is good. The numerical modeling presented here will provide important information on the strain state of the tape-stacks and can be used to investigate the behavior of more recently developed cable designs and optimize future configurations.
doi_str_mv 10.1109/TASC.2020.2970384
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TASC_2020_2970384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8976270</ieee_id><sourcerecordid>2368125584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-252738ad0d8be1d560abe205c37196860551671ca8859d32c574f632792f92a83</originalsourceid><addsrcrecordid>eNo9kL1OwzAURi0EEqXwAIjFEnOKf-LEGaOIEqRWDClitNzEaV25cXCcoQPvjkMrpu8O57tX9wDwiNECY5S9bPKqWBBE0IJkKaI8vgIzzBiPCMPsOsyI4YgTQm_B3TAcEMIxj9kM_FTejbUfnTRwbRtldLeDtoXlpoKF3BoV6S4qbNeM2sO_rL118Ev7PSwDXUtjTrAy1nvVwNyMR92Nx0A6BdsAlnq3j5ZamQau5a5THuZ9P9W8tt1wD25aaQb1cMk5-Fy-booyWn28vRf5KqpJRn34gaSUywY1fKtwwxIkt4ogVtMUZwlPEGM4SXEtOWdZQ0nN0rhNKEkz0mZEcjoHz-e9vbPfoxq8ONjRdeGkIDThmARTcaDwmaqdHQanWtE7fZTuJDASk2UxWRaTZXGxHDpP545WSv3zPEsTEoBfzwB35w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2368125584</pqid></control><display><type>article</type><title>Structural Modeling of HTS Cable-in-Conduit Conductor With Helically Slotted Aluminum Core for High-Field Magnet Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Pierro, Federica ; Zhao, Zijia ; Chiesa, Luisa ; Celentano, Giuseppe ; Marchetti, Marcello ; della Corte, Antonio</creator><creatorcontrib>Pierro, Federica ; Zhao, Zijia ; Chiesa, Luisa ; Celentano, Giuseppe ; Marchetti, Marcello ; della Corte, Antonio</creatorcontrib><description>A structural model has been developed for a Cable-in-Conduit Conductor (CICC) made with 2G HTS superconductors inserted in a helically slotted aluminum core. The cable is particularly suited for high-field applications and consists of a twisted aluminum core and five helical slots. Each slot accommodates a stack of twenty REBCO tapes. The cable is equipped with a central cooling channel and an aluminum jacket. In this work, finite element analysis was used to predict the electrical performance of the cable as a function of the bending diameter. The model consists of three parts: compaction of the aluminum jacket on the slotted core (each slot filled with the HTS stack of tapes), cable's bending and thermal cooldown (from room temperature to 77 K). It was found that the compaction process affects the performance for the top and bottom tapes of the stack. To mitigate this effect, a new design option which includes one structural tape (either copper or stainless steel) on the top and bottom of the stack was evaluated, showing a significant reduction of the strain in those tapes. By adding the strain results generated by the three processes (compaction, bending and cooldown), the normalized critical current was calculated as a function of the bending diameter and compared with experimental data. With a friction coefficient of 0.02 between the tapes, the agreement between model and experimental data is good. The numerical modeling presented here will provide important information on the strain state of the tape-stacks and can be used to investigate the behavior of more recently developed cable designs and optimize future configurations.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2020.2970384</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aluminum ; Bending ; Cable shielding ; Coefficient of friction ; Compaction ; Conductors ; Critical current (superconductivity) ; Finite element method ; High Temperature Superconductors ; Mathematical analysis ; Power cables ; REBCO ; Room temperature ; Stainless steels ; Strain ; Supercon-ducting magnets ; Superconducting cables ; Superconducting tapes ; Tapes (data media)</subject><ispartof>IEEE transactions on applied superconductivity, 2020-06, Vol.30 (4), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-252738ad0d8be1d560abe205c37196860551671ca8859d32c574f632792f92a83</citedby><cites>FETCH-LOGICAL-c293t-252738ad0d8be1d560abe205c37196860551671ca8859d32c574f632792f92a83</cites><orcidid>0000-0002-8783-2031 ; 0000-0002-4872-6746 ; 0000-0001-6017-0739 ; 0000-0001-6608-7506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8976270$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8976270$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pierro, Federica</creatorcontrib><creatorcontrib>Zhao, Zijia</creatorcontrib><creatorcontrib>Chiesa, Luisa</creatorcontrib><creatorcontrib>Celentano, Giuseppe</creatorcontrib><creatorcontrib>Marchetti, Marcello</creatorcontrib><creatorcontrib>della Corte, Antonio</creatorcontrib><title>Structural Modeling of HTS Cable-in-Conduit Conductor With Helically Slotted Aluminum Core for High-Field Magnet Applications</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>A structural model has been developed for a Cable-in-Conduit Conductor (CICC) made with 2G HTS superconductors inserted in a helically slotted aluminum core. The cable is particularly suited for high-field applications and consists of a twisted aluminum core and five helical slots. Each slot accommodates a stack of twenty REBCO tapes. The cable is equipped with a central cooling channel and an aluminum jacket. In this work, finite element analysis was used to predict the electrical performance of the cable as a function of the bending diameter. The model consists of three parts: compaction of the aluminum jacket on the slotted core (each slot filled with the HTS stack of tapes), cable's bending and thermal cooldown (from room temperature to 77 K). It was found that the compaction process affects the performance for the top and bottom tapes of the stack. To mitigate this effect, a new design option which includes one structural tape (either copper or stainless steel) on the top and bottom of the stack was evaluated, showing a significant reduction of the strain in those tapes. By adding the strain results generated by the three processes (compaction, bending and cooldown), the normalized critical current was calculated as a function of the bending diameter and compared with experimental data. With a friction coefficient of 0.02 between the tapes, the agreement between model and experimental data is good. The numerical modeling presented here will provide important information on the strain state of the tape-stacks and can be used to investigate the behavior of more recently developed cable designs and optimize future configurations.</description><subject>Aluminum</subject><subject>Bending</subject><subject>Cable shielding</subject><subject>Coefficient of friction</subject><subject>Compaction</subject><subject>Conductors</subject><subject>Critical current (superconductivity)</subject><subject>Finite element method</subject><subject>High Temperature Superconductors</subject><subject>Mathematical analysis</subject><subject>Power cables</subject><subject>REBCO</subject><subject>Room temperature</subject><subject>Stainless steels</subject><subject>Strain</subject><subject>Supercon-ducting magnets</subject><subject>Superconducting cables</subject><subject>Superconducting tapes</subject><subject>Tapes (data media)</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kL1OwzAURi0EEqXwAIjFEnOKf-LEGaOIEqRWDClitNzEaV25cXCcoQPvjkMrpu8O57tX9wDwiNECY5S9bPKqWBBE0IJkKaI8vgIzzBiPCMPsOsyI4YgTQm_B3TAcEMIxj9kM_FTejbUfnTRwbRtldLeDtoXlpoKF3BoV6S4qbNeM2sO_rL118Ev7PSwDXUtjTrAy1nvVwNyMR92Nx0A6BdsAlnq3j5ZamQau5a5THuZ9P9W8tt1wD25aaQb1cMk5-Fy-booyWn28vRf5KqpJRn34gaSUywY1fKtwwxIkt4ogVtMUZwlPEGM4SXEtOWdZQ0nN0rhNKEkz0mZEcjoHz-e9vbPfoxq8ONjRdeGkIDThmARTcaDwmaqdHQanWtE7fZTuJDASk2UxWRaTZXGxHDpP545WSv3zPEsTEoBfzwB35w</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Pierro, Federica</creator><creator>Zhao, Zijia</creator><creator>Chiesa, Luisa</creator><creator>Celentano, Giuseppe</creator><creator>Marchetti, Marcello</creator><creator>della Corte, Antonio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8783-2031</orcidid><orcidid>https://orcid.org/0000-0002-4872-6746</orcidid><orcidid>https://orcid.org/0000-0001-6017-0739</orcidid><orcidid>https://orcid.org/0000-0001-6608-7506</orcidid></search><sort><creationdate>20200601</creationdate><title>Structural Modeling of HTS Cable-in-Conduit Conductor With Helically Slotted Aluminum Core for High-Field Magnet Applications</title><author>Pierro, Federica ; Zhao, Zijia ; Chiesa, Luisa ; Celentano, Giuseppe ; Marchetti, Marcello ; della Corte, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-252738ad0d8be1d560abe205c37196860551671ca8859d32c574f632792f92a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum</topic><topic>Bending</topic><topic>Cable shielding</topic><topic>Coefficient of friction</topic><topic>Compaction</topic><topic>Conductors</topic><topic>Critical current (superconductivity)</topic><topic>Finite element method</topic><topic>High Temperature Superconductors</topic><topic>Mathematical analysis</topic><topic>Power cables</topic><topic>REBCO</topic><topic>Room temperature</topic><topic>Stainless steels</topic><topic>Strain</topic><topic>Supercon-ducting magnets</topic><topic>Superconducting cables</topic><topic>Superconducting tapes</topic><topic>Tapes (data media)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pierro, Federica</creatorcontrib><creatorcontrib>Zhao, Zijia</creatorcontrib><creatorcontrib>Chiesa, Luisa</creatorcontrib><creatorcontrib>Celentano, Giuseppe</creatorcontrib><creatorcontrib>Marchetti, Marcello</creatorcontrib><creatorcontrib>della Corte, Antonio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pierro, Federica</au><au>Zhao, Zijia</au><au>Chiesa, Luisa</au><au>Celentano, Giuseppe</au><au>Marchetti, Marcello</au><au>della Corte, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Modeling of HTS Cable-in-Conduit Conductor With Helically Slotted Aluminum Core for High-Field Magnet Applications</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>30</volume><issue>4</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>A structural model has been developed for a Cable-in-Conduit Conductor (CICC) made with 2G HTS superconductors inserted in a helically slotted aluminum core. The cable is particularly suited for high-field applications and consists of a twisted aluminum core and five helical slots. Each slot accommodates a stack of twenty REBCO tapes. The cable is equipped with a central cooling channel and an aluminum jacket. In this work, finite element analysis was used to predict the electrical performance of the cable as a function of the bending diameter. The model consists of three parts: compaction of the aluminum jacket on the slotted core (each slot filled with the HTS stack of tapes), cable's bending and thermal cooldown (from room temperature to 77 K). It was found that the compaction process affects the performance for the top and bottom tapes of the stack. To mitigate this effect, a new design option which includes one structural tape (either copper or stainless steel) on the top and bottom of the stack was evaluated, showing a significant reduction of the strain in those tapes. By adding the strain results generated by the three processes (compaction, bending and cooldown), the normalized critical current was calculated as a function of the bending diameter and compared with experimental data. With a friction coefficient of 0.02 between the tapes, the agreement between model and experimental data is good. The numerical modeling presented here will provide important information on the strain state of the tape-stacks and can be used to investigate the behavior of more recently developed cable designs and optimize future configurations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2020.2970384</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-8783-2031</orcidid><orcidid>https://orcid.org/0000-0002-4872-6746</orcidid><orcidid>https://orcid.org/0000-0001-6017-0739</orcidid><orcidid>https://orcid.org/0000-0001-6608-7506</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2020-06, Vol.30 (4), p.1-5
issn 1051-8223
1558-2515
language eng
recordid cdi_crossref_primary_10_1109_TASC_2020_2970384
source IEEE Electronic Library (IEL)
subjects Aluminum
Bending
Cable shielding
Coefficient of friction
Compaction
Conductors
Critical current (superconductivity)
Finite element method
High Temperature Superconductors
Mathematical analysis
Power cables
REBCO
Room temperature
Stainless steels
Strain
Supercon-ducting magnets
Superconducting cables
Superconducting tapes
Tapes (data media)
title Structural Modeling of HTS Cable-in-Conduit Conductor With Helically Slotted Aluminum Core for High-Field Magnet Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A25%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Modeling%20of%20HTS%20Cable-in-Conduit%20Conductor%20With%20Helically%20Slotted%20Aluminum%20Core%20for%20High-Field%20Magnet%20Applications&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Pierro,%20Federica&rft.date=2020-06-01&rft.volume=30&rft.issue=4&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2020.2970384&rft_dat=%3Cproquest_RIE%3E2368125584%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2368125584&rft_id=info:pmid/&rft_ieee_id=8976270&rfr_iscdi=true