Magnetic Shielding of Open and Semi-closed Bulk Superconductor Tubes: The Role of a Cap

In this paper we investigate the magnetic shielding of hollow and semi-closed bulk superconducting tubes at 77 K. We first consider the properties of a commercial Bi-2223 tube closed by a disk-shaped cap placed against its extremity. The results are compared with those obtained on a bulk large grain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2019-04, Vol.29 (3), p.1-9
Hauptverfasser: Wera, Laurent, Fagnard, Jean-Francois, Hogan, Kevin, Vanderheyden, Benoit, Namburi, Devendra Kumar, Yunhua Shi, Cardwell, David A., Vanderbemden, Philippe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 3
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 29
creator Wera, Laurent
Fagnard, Jean-Francois
Hogan, Kevin
Vanderheyden, Benoit
Namburi, Devendra Kumar
Yunhua Shi
Cardwell, David A.
Vanderbemden, Philippe
description In this paper we investigate the magnetic shielding of hollow and semi-closed bulk superconducting tubes at 77 K. We first consider the properties of a commercial Bi-2223 tube closed by a disk-shaped cap placed against its extremity. The results are compared with those obtained on a bulk large grain Y-Ba-Cu-O (YBCO) tube produced by buffer-aided top seeded melt growth. In this process, the disk-shaped pellet and the tubular sample are grown together, resulting in a tube naturally closed at one extremity. The field to be shielded is either parallel or perpendicular to the main axis of the tube. The experimental results are compared with the results of finite element numerical modeling carried out either in two dimensions (for the axial configuration) or three dimensions (for the transverse configuration). In the axial configuration, the results show that the shielded volume can be enhanced easily by increasing the thickness of the cap. In the transverse configuration, the results show the critical role played by the superconducting current loops flowing between the tube and the cap for magnetic shielding. If the tube and the cap are separated by a non-superconducting joint or air gap, the presence of a cap leads only to a small improvement of the transverse shielding factor, even for a configuration where the gap between the cap and the tube contains a 90° bend. The cap leads to a significant increase in the transverse shielding when the cap and the tube are naturally grown in the same process, i.e., made of a continuous superconducting material. The experimental results can be reproduced qualitatively by 3-D numerical modeling.
doi_str_mv 10.1109/TASC.2019.2891897
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TASC_2019_2891897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8610099</ieee_id><sourcerecordid>2180053879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-6692f13dd101ae3b7f86551200c57c3183536014f777c13cefb5989dba5483463</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhosoOKc_QLwJeN2ZkzRt4t0cfsFk4CZehjQ93TK7pqar4L-3o8Or8168z-HliaJroBMAqu5W0-VswiioCZMKpMpOohEIIWMmQJz2mQqIJWP8PLpo2y2lkMhEjKLPN7Ouce8sWW4cVoWr18SXZNFgTUxdkCXuXGwr32JBHrrqiyy7BoP1ddHZvQ9k1eXY3pPVBsm7r_DAGjIzzWV0VpqqxavjHUcfT4-r2Us8Xzy_zqbz2CZJuo_TVLESeFEABYM8z0qZCgGMUisyy0FywdN-a5llmQVuscyFkqrIjUgkT1I-jvjwt3K4Ru1D7vQP0964IXfVWhurc9SMpVIzzinPeup2oJrgvzts93rru1D3QzUDSangMlN9C4aWDb5tA5a6CW5nwq8Gqg_W9cG6PljXR-s9czMwDhH_-zIFSpXify0uetk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2180053879</pqid></control><display><type>article</type><title>Magnetic Shielding of Open and Semi-closed Bulk Superconductor Tubes: The Role of a Cap</title><source>IEEE Electronic Library (IEL)</source><creator>Wera, Laurent ; Fagnard, Jean-Francois ; Hogan, Kevin ; Vanderheyden, Benoit ; Namburi, Devendra Kumar ; Yunhua Shi ; Cardwell, David A. ; Vanderbemden, Philippe</creator><creatorcontrib>Wera, Laurent ; Fagnard, Jean-Francois ; Hogan, Kevin ; Vanderheyden, Benoit ; Namburi, Devendra Kumar ; Yunhua Shi ; Cardwell, David A. ; Vanderbemden, Philippe</creatorcontrib><description>In this paper we investigate the magnetic shielding of hollow and semi-closed bulk superconducting tubes at 77 K. We first consider the properties of a commercial Bi-2223 tube closed by a disk-shaped cap placed against its extremity. The results are compared with those obtained on a bulk large grain Y-Ba-Cu-O (YBCO) tube produced by buffer-aided top seeded melt growth. In this process, the disk-shaped pellet and the tubular sample are grown together, resulting in a tube naturally closed at one extremity. The field to be shielded is either parallel or perpendicular to the main axis of the tube. The experimental results are compared with the results of finite element numerical modeling carried out either in two dimensions (for the axial configuration) or three dimensions (for the transverse configuration). In the axial configuration, the results show that the shielded volume can be enhanced easily by increasing the thickness of the cap. In the transverse configuration, the results show the critical role played by the superconducting current loops flowing between the tube and the cap for magnetic shielding. If the tube and the cap are separated by a non-superconducting joint or air gap, the presence of a cap leads only to a small improvement of the transverse shielding factor, even for a configuration where the gap between the cap and the tube contains a 90° bend. The cap leads to a significant increase in the transverse shielding when the cap and the tube are naturally grown in the same process, i.e., made of a continuous superconducting material. The experimental results can be reproduced qualitatively by 3-D numerical modeling.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2019.2891897</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject><![CDATA[Air gaps ; Bismuth strontium calcium copper oxide ; Bulk high-temperature superconductors ; Bulk superconductors ; Configurations ; Electrical & electronics engineering ; Electron tubes ; Engineering, computing & technology ; Extremities ; Finite element method ; Geometry ; Ingénierie électrique & électronique ; Ingénierie, informatique & technologie ; Magnetic fields ; Magnetic measurements ; Magnetic shielding ; Materials science & engineering ; Mathematical models ; Physical, chemical, mathematical & earth Sciences ; Physics ; Physique ; Physique, chimie, mathématiques & sciences de la terre ; Science des matériaux & ingénierie ; Superconductivity ; Three dimensional models ; Tubes ; Two dimensional models ; Yttrium barium copper oxide]]></subject><ispartof>IEEE transactions on applied superconductivity, 2019-04, Vol.29 (3), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-6692f13dd101ae3b7f86551200c57c3183536014f777c13cefb5989dba5483463</citedby><cites>FETCH-LOGICAL-c446t-6692f13dd101ae3b7f86551200c57c3183536014f777c13cefb5989dba5483463</cites><orcidid>0000-0003-4642-969X ; 0000-0002-1436-7116</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8610099$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8610099$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wera, Laurent</creatorcontrib><creatorcontrib>Fagnard, Jean-Francois</creatorcontrib><creatorcontrib>Hogan, Kevin</creatorcontrib><creatorcontrib>Vanderheyden, Benoit</creatorcontrib><creatorcontrib>Namburi, Devendra Kumar</creatorcontrib><creatorcontrib>Yunhua Shi</creatorcontrib><creatorcontrib>Cardwell, David A.</creatorcontrib><creatorcontrib>Vanderbemden, Philippe</creatorcontrib><title>Magnetic Shielding of Open and Semi-closed Bulk Superconductor Tubes: The Role of a Cap</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>In this paper we investigate the magnetic shielding of hollow and semi-closed bulk superconducting tubes at 77 K. We first consider the properties of a commercial Bi-2223 tube closed by a disk-shaped cap placed against its extremity. The results are compared with those obtained on a bulk large grain Y-Ba-Cu-O (YBCO) tube produced by buffer-aided top seeded melt growth. In this process, the disk-shaped pellet and the tubular sample are grown together, resulting in a tube naturally closed at one extremity. The field to be shielded is either parallel or perpendicular to the main axis of the tube. The experimental results are compared with the results of finite element numerical modeling carried out either in two dimensions (for the axial configuration) or three dimensions (for the transverse configuration). In the axial configuration, the results show that the shielded volume can be enhanced easily by increasing the thickness of the cap. In the transverse configuration, the results show the critical role played by the superconducting current loops flowing between the tube and the cap for magnetic shielding. If the tube and the cap are separated by a non-superconducting joint or air gap, the presence of a cap leads only to a small improvement of the transverse shielding factor, even for a configuration where the gap between the cap and the tube contains a 90° bend. The cap leads to a significant increase in the transverse shielding when the cap and the tube are naturally grown in the same process, i.e., made of a continuous superconducting material. The experimental results can be reproduced qualitatively by 3-D numerical modeling.</description><subject>Air gaps</subject><subject>Bismuth strontium calcium copper oxide</subject><subject>Bulk high-temperature superconductors</subject><subject>Bulk superconductors</subject><subject>Configurations</subject><subject>Electrical &amp; electronics engineering</subject><subject>Electron tubes</subject><subject>Engineering, computing &amp; technology</subject><subject>Extremities</subject><subject>Finite element method</subject><subject>Geometry</subject><subject>Ingénierie électrique &amp; électronique</subject><subject>Ingénierie, informatique &amp; technologie</subject><subject>Magnetic fields</subject><subject>Magnetic measurements</subject><subject>Magnetic shielding</subject><subject>Materials science &amp; engineering</subject><subject>Mathematical models</subject><subject>Physical, chemical, mathematical &amp; earth Sciences</subject><subject>Physics</subject><subject>Physique</subject><subject>Physique, chimie, mathématiques &amp; sciences de la terre</subject><subject>Science des matériaux &amp; ingénierie</subject><subject>Superconductivity</subject><subject>Three dimensional models</subject><subject>Tubes</subject><subject>Two dimensional models</subject><subject>Yttrium barium copper oxide</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhosoOKc_QLwJeN2ZkzRt4t0cfsFk4CZehjQ93TK7pqar4L-3o8Or8168z-HliaJroBMAqu5W0-VswiioCZMKpMpOohEIIWMmQJz2mQqIJWP8PLpo2y2lkMhEjKLPN7Ouce8sWW4cVoWr18SXZNFgTUxdkCXuXGwr32JBHrrqiyy7BoP1ddHZvQ9k1eXY3pPVBsm7r_DAGjIzzWV0VpqqxavjHUcfT4-r2Us8Xzy_zqbz2CZJuo_TVLESeFEABYM8z0qZCgGMUisyy0FywdN-a5llmQVuscyFkqrIjUgkT1I-jvjwt3K4Ru1D7vQP0964IXfVWhurc9SMpVIzzinPeup2oJrgvzts93rru1D3QzUDSangMlN9C4aWDb5tA5a6CW5nwq8Gqg_W9cG6PljXR-s9czMwDhH_-zIFSpXify0uetk</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Wera, Laurent</creator><creator>Fagnard, Jean-Francois</creator><creator>Hogan, Kevin</creator><creator>Vanderheyden, Benoit</creator><creator>Namburi, Devendra Kumar</creator><creator>Yunhua Shi</creator><creator>Cardwell, David A.</creator><creator>Vanderbemden, Philippe</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>Q33</scope><orcidid>https://orcid.org/0000-0003-4642-969X</orcidid><orcidid>https://orcid.org/0000-0002-1436-7116</orcidid></search><sort><creationdate>20190401</creationdate><title>Magnetic Shielding of Open and Semi-closed Bulk Superconductor Tubes: The Role of a Cap</title><author>Wera, Laurent ; Fagnard, Jean-Francois ; Hogan, Kevin ; Vanderheyden, Benoit ; Namburi, Devendra Kumar ; Yunhua Shi ; Cardwell, David A. ; Vanderbemden, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-6692f13dd101ae3b7f86551200c57c3183536014f777c13cefb5989dba5483463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Air gaps</topic><topic>Bismuth strontium calcium copper oxide</topic><topic>Bulk high-temperature superconductors</topic><topic>Bulk superconductors</topic><topic>Configurations</topic><topic>Electrical &amp; electronics engineering</topic><topic>Electron tubes</topic><topic>Engineering, computing &amp; technology</topic><topic>Extremities</topic><topic>Finite element method</topic><topic>Geometry</topic><topic>Ingénierie électrique &amp; électronique</topic><topic>Ingénierie, informatique &amp; technologie</topic><topic>Magnetic fields</topic><topic>Magnetic measurements</topic><topic>Magnetic shielding</topic><topic>Materials science &amp; engineering</topic><topic>Mathematical models</topic><topic>Physical, chemical, mathematical &amp; earth Sciences</topic><topic>Physics</topic><topic>Physique</topic><topic>Physique, chimie, mathématiques &amp; sciences de la terre</topic><topic>Science des matériaux &amp; ingénierie</topic><topic>Superconductivity</topic><topic>Three dimensional models</topic><topic>Tubes</topic><topic>Two dimensional models</topic><topic>Yttrium barium copper oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wera, Laurent</creatorcontrib><creatorcontrib>Fagnard, Jean-Francois</creatorcontrib><creatorcontrib>Hogan, Kevin</creatorcontrib><creatorcontrib>Vanderheyden, Benoit</creatorcontrib><creatorcontrib>Namburi, Devendra Kumar</creatorcontrib><creatorcontrib>Yunhua Shi</creatorcontrib><creatorcontrib>Cardwell, David A.</creatorcontrib><creatorcontrib>Vanderbemden, Philippe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Université de Liège - Open Repository and Bibliography (ORBI)</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wera, Laurent</au><au>Fagnard, Jean-Francois</au><au>Hogan, Kevin</au><au>Vanderheyden, Benoit</au><au>Namburi, Devendra Kumar</au><au>Yunhua Shi</au><au>Cardwell, David A.</au><au>Vanderbemden, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Shielding of Open and Semi-closed Bulk Superconductor Tubes: The Role of a Cap</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>29</volume><issue>3</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>In this paper we investigate the magnetic shielding of hollow and semi-closed bulk superconducting tubes at 77 K. We first consider the properties of a commercial Bi-2223 tube closed by a disk-shaped cap placed against its extremity. The results are compared with those obtained on a bulk large grain Y-Ba-Cu-O (YBCO) tube produced by buffer-aided top seeded melt growth. In this process, the disk-shaped pellet and the tubular sample are grown together, resulting in a tube naturally closed at one extremity. The field to be shielded is either parallel or perpendicular to the main axis of the tube. The experimental results are compared with the results of finite element numerical modeling carried out either in two dimensions (for the axial configuration) or three dimensions (for the transverse configuration). In the axial configuration, the results show that the shielded volume can be enhanced easily by increasing the thickness of the cap. In the transverse configuration, the results show the critical role played by the superconducting current loops flowing between the tube and the cap for magnetic shielding. If the tube and the cap are separated by a non-superconducting joint or air gap, the presence of a cap leads only to a small improvement of the transverse shielding factor, even for a configuration where the gap between the cap and the tube contains a 90° bend. The cap leads to a significant increase in the transverse shielding when the cap and the tube are naturally grown in the same process, i.e., made of a continuous superconducting material. The experimental results can be reproduced qualitatively by 3-D numerical modeling.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2019.2891897</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4642-969X</orcidid><orcidid>https://orcid.org/0000-0002-1436-7116</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2019-04, Vol.29 (3), p.1-9
issn 1051-8223
1558-2515
language eng
recordid cdi_crossref_primary_10_1109_TASC_2019_2891897
source IEEE Electronic Library (IEL)
subjects Air gaps
Bismuth strontium calcium copper oxide
Bulk high-temperature superconductors
Bulk superconductors
Configurations
Electrical & electronics engineering
Electron tubes
Engineering, computing & technology
Extremities
Finite element method
Geometry
Ingénierie électrique & électronique
Ingénierie, informatique & technologie
Magnetic fields
Magnetic measurements
Magnetic shielding
Materials science & engineering
Mathematical models
Physical, chemical, mathematical & earth Sciences
Physics
Physique
Physique, chimie, mathématiques & sciences de la terre
Science des matériaux & ingénierie
Superconductivity
Three dimensional models
Tubes
Two dimensional models
Yttrium barium copper oxide
title Magnetic Shielding of Open and Semi-closed Bulk Superconductor Tubes: The Role of a Cap
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T08%3A51%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Shielding%20of%20Open%20and%20Semi-closed%20Bulk%20Superconductor%20Tubes:%20The%20Role%20of%20a%20Cap&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Wera,%20Laurent&rft.date=2019-04-01&rft.volume=29&rft.issue=3&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2019.2891897&rft_dat=%3Cproquest_RIE%3E2180053879%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2180053879&rft_id=info:pmid/&rft_ieee_id=8610099&rfr_iscdi=true