Energy Efficient Superconducting Neural Networks for High-Speed Intellectual Data Processing Systems

We present the results of circuit simulations for the adiabatic flux-operating neuron. The proposed cell with one-shot calculation of activation function is based on a modified single-junction superconducting quantum interferometer. In comparison, functionally equivalent elements of the artificial n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2018-10, Vol.28 (7), p.1-6
Hauptverfasser: Klenov, Nikolay V., Schegolev, Andrey E., Soloviev, Igor I., Bakurskiy, Sergey V., Tereshonok, Maxim V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 7
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 28
creator Klenov, Nikolay V.
Schegolev, Andrey E.
Soloviev, Igor I.
Bakurskiy, Sergey V.
Tereshonok, Maxim V.
description We present the results of circuit simulations for the adiabatic flux-operating neuron. The proposed cell with one-shot calculation of activation function is based on a modified single-junction superconducting quantum interferometer. In comparison, functionally equivalent elements of the artificial neural network (ANN) in the semiconductor-based implementations consist of approximately 20 transistors. Also in the article, we present the connecting synapse based on the adiabatic quantum flux parametron. These neurons and synapses allow constructing ANNs with a magnetic representation of information in the form of direction and/or magnitude of the magnetic flux in the superconducting circuit. We discuss the dissipation of energy during operations in the frame of the proposed concept. This value in superconducting neurons and synapses with sub-nanosecond timescale can be reduced down to 10 and 0.1 aJ, respectively. The use of the adiabatic superconducting logic circuits in our approach promises compatibility with superconducting quantum information processing systems.
doi_str_mv 10.1109/TASC.2018.2836903
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TASC_2018_2836903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8359347</ieee_id><sourcerecordid>2117130108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-3fe359da12841132f553c128ca1350176145044476f4cc5887750ddf6d46bf233</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7d2Y9kcyy12kJRIfW8xM1sTU2TuLtB-u9NqHiaGXjemeEh5BboDIBmD9t5vpgxCmrGFE8yys_IBKRUMZMgz4eeSogVY_ySXHm_pxSEEnJCymWDbneMltZWpsImRHnfoTNtU_YmVM0uesHeFfVQwk_rvnxkWxetqt1nnHeIZbRuAtY1mtAP0GMRiujNtQa9H7P50Qc8-GtyYYva481fnZL3p-V2sYo3r8_rxXwTG5bxEHOLXGZlAUwJAM6slNwMgymASwppAkJSIUSaWGGMVCpNJS1Lm5Qi-bCM8ym5P-3tXPvdow963_auGU5qBpACp0DVQMGJMq713qHVnasOhTtqoHqUqUeZepSp_2QOmbtTpkLEf14N73KR8l-3SG_M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117130108</pqid></control><display><type>article</type><title>Energy Efficient Superconducting Neural Networks for High-Speed Intellectual Data Processing Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Klenov, Nikolay V. ; Schegolev, Andrey E. ; Soloviev, Igor I. ; Bakurskiy, Sergey V. ; Tereshonok, Maxim V.</creator><creatorcontrib>Klenov, Nikolay V. ; Schegolev, Andrey E. ; Soloviev, Igor I. ; Bakurskiy, Sergey V. ; Tereshonok, Maxim V.</creatorcontrib><description>We present the results of circuit simulations for the adiabatic flux-operating neuron. The proposed cell with one-shot calculation of activation function is based on a modified single-junction superconducting quantum interferometer. In comparison, functionally equivalent elements of the artificial neural network (ANN) in the semiconductor-based implementations consist of approximately 20 transistors. Also in the article, we present the connecting synapse based on the adiabatic quantum flux parametron. These neurons and synapses allow constructing ANNs with a magnetic representation of information in the form of direction and/or magnitude of the magnetic flux in the superconducting circuit. We discuss the dissipation of energy during operations in the frame of the proposed concept. This value in superconducting neurons and synapses with sub-nanosecond timescale can be reduced down to 10 and 0.1 aJ, respectively. The use of the adiabatic superconducting logic circuits in our approach promises compatibility with superconducting quantum information processing systems.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2018.2836903</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adiabatic flow ; Adiabatic quantum flux parametron ; artificial neural network (ANN) ; Artificial neural networks ; Computer simulation ; Data processing ; Inductance ; Josephson junctions ; Logic circuits ; Magnetic flux ; Neural networks ; Neurons ; Quantum phenomena ; Quantum theory ; Semiconductor devices ; Superconducting integrated circuits ; Superconducting logic circuits ; superconducting neuron ; superconducting quantum interferometer ; superconducting synapse ; Superconductivity ; Synapses ; Transistors</subject><ispartof>IEEE transactions on applied superconductivity, 2018-10, Vol.28 (7), p.1-6</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-3fe359da12841132f553c128ca1350176145044476f4cc5887750ddf6d46bf233</citedby><cites>FETCH-LOGICAL-c293t-3fe359da12841132f553c128ca1350176145044476f4cc5887750ddf6d46bf233</cites><orcidid>0000-0001-9735-2720</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8359347$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8359347$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Klenov, Nikolay V.</creatorcontrib><creatorcontrib>Schegolev, Andrey E.</creatorcontrib><creatorcontrib>Soloviev, Igor I.</creatorcontrib><creatorcontrib>Bakurskiy, Sergey V.</creatorcontrib><creatorcontrib>Tereshonok, Maxim V.</creatorcontrib><title>Energy Efficient Superconducting Neural Networks for High-Speed Intellectual Data Processing Systems</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>We present the results of circuit simulations for the adiabatic flux-operating neuron. The proposed cell with one-shot calculation of activation function is based on a modified single-junction superconducting quantum interferometer. In comparison, functionally equivalent elements of the artificial neural network (ANN) in the semiconductor-based implementations consist of approximately 20 transistors. Also in the article, we present the connecting synapse based on the adiabatic quantum flux parametron. These neurons and synapses allow constructing ANNs with a magnetic representation of information in the form of direction and/or magnitude of the magnetic flux in the superconducting circuit. We discuss the dissipation of energy during operations in the frame of the proposed concept. This value in superconducting neurons and synapses with sub-nanosecond timescale can be reduced down to 10 and 0.1 aJ, respectively. The use of the adiabatic superconducting logic circuits in our approach promises compatibility with superconducting quantum information processing systems.</description><subject>Adiabatic flow</subject><subject>Adiabatic quantum flux parametron</subject><subject>artificial neural network (ANN)</subject><subject>Artificial neural networks</subject><subject>Computer simulation</subject><subject>Data processing</subject><subject>Inductance</subject><subject>Josephson junctions</subject><subject>Logic circuits</subject><subject>Magnetic flux</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Quantum phenomena</subject><subject>Quantum theory</subject><subject>Semiconductor devices</subject><subject>Superconducting integrated circuits</subject><subject>Superconducting logic circuits</subject><subject>superconducting neuron</subject><subject>superconducting quantum interferometer</subject><subject>superconducting synapse</subject><subject>Superconductivity</subject><subject>Synapses</subject><subject>Transistors</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7d2Y9kcyy12kJRIfW8xM1sTU2TuLtB-u9NqHiaGXjemeEh5BboDIBmD9t5vpgxCmrGFE8yys_IBKRUMZMgz4eeSogVY_ySXHm_pxSEEnJCymWDbneMltZWpsImRHnfoTNtU_YmVM0uesHeFfVQwk_rvnxkWxetqt1nnHeIZbRuAtY1mtAP0GMRiujNtQa9H7P50Qc8-GtyYYva481fnZL3p-V2sYo3r8_rxXwTG5bxEHOLXGZlAUwJAM6slNwMgymASwppAkJSIUSaWGGMVCpNJS1Lm5Qi-bCM8ym5P-3tXPvdow963_auGU5qBpACp0DVQMGJMq713qHVnasOhTtqoHqUqUeZepSp_2QOmbtTpkLEf14N73KR8l-3SG_M</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Klenov, Nikolay V.</creator><creator>Schegolev, Andrey E.</creator><creator>Soloviev, Igor I.</creator><creator>Bakurskiy, Sergey V.</creator><creator>Tereshonok, Maxim V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9735-2720</orcidid></search><sort><creationdate>20181001</creationdate><title>Energy Efficient Superconducting Neural Networks for High-Speed Intellectual Data Processing Systems</title><author>Klenov, Nikolay V. ; Schegolev, Andrey E. ; Soloviev, Igor I. ; Bakurskiy, Sergey V. ; Tereshonok, Maxim V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-3fe359da12841132f553c128ca1350176145044476f4cc5887750ddf6d46bf233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adiabatic flow</topic><topic>Adiabatic quantum flux parametron</topic><topic>artificial neural network (ANN)</topic><topic>Artificial neural networks</topic><topic>Computer simulation</topic><topic>Data processing</topic><topic>Inductance</topic><topic>Josephson junctions</topic><topic>Logic circuits</topic><topic>Magnetic flux</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Quantum phenomena</topic><topic>Quantum theory</topic><topic>Semiconductor devices</topic><topic>Superconducting integrated circuits</topic><topic>Superconducting logic circuits</topic><topic>superconducting neuron</topic><topic>superconducting quantum interferometer</topic><topic>superconducting synapse</topic><topic>Superconductivity</topic><topic>Synapses</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klenov, Nikolay V.</creatorcontrib><creatorcontrib>Schegolev, Andrey E.</creatorcontrib><creatorcontrib>Soloviev, Igor I.</creatorcontrib><creatorcontrib>Bakurskiy, Sergey V.</creatorcontrib><creatorcontrib>Tereshonok, Maxim V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Klenov, Nikolay V.</au><au>Schegolev, Andrey E.</au><au>Soloviev, Igor I.</au><au>Bakurskiy, Sergey V.</au><au>Tereshonok, Maxim V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy Efficient Superconducting Neural Networks for High-Speed Intellectual Data Processing Systems</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>28</volume><issue>7</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>We present the results of circuit simulations for the adiabatic flux-operating neuron. The proposed cell with one-shot calculation of activation function is based on a modified single-junction superconducting quantum interferometer. In comparison, functionally equivalent elements of the artificial neural network (ANN) in the semiconductor-based implementations consist of approximately 20 transistors. Also in the article, we present the connecting synapse based on the adiabatic quantum flux parametron. These neurons and synapses allow constructing ANNs with a magnetic representation of information in the form of direction and/or magnitude of the magnetic flux in the superconducting circuit. We discuss the dissipation of energy during operations in the frame of the proposed concept. This value in superconducting neurons and synapses with sub-nanosecond timescale can be reduced down to 10 and 0.1 aJ, respectively. The use of the adiabatic superconducting logic circuits in our approach promises compatibility with superconducting quantum information processing systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2018.2836903</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9735-2720</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2018-10, Vol.28 (7), p.1-6
issn 1051-8223
1558-2515
language eng
recordid cdi_crossref_primary_10_1109_TASC_2018_2836903
source IEEE Electronic Library (IEL)
subjects Adiabatic flow
Adiabatic quantum flux parametron
artificial neural network (ANN)
Artificial neural networks
Computer simulation
Data processing
Inductance
Josephson junctions
Logic circuits
Magnetic flux
Neural networks
Neurons
Quantum phenomena
Quantum theory
Semiconductor devices
Superconducting integrated circuits
Superconducting logic circuits
superconducting neuron
superconducting quantum interferometer
superconducting synapse
Superconductivity
Synapses
Transistors
title Energy Efficient Superconducting Neural Networks for High-Speed Intellectual Data Processing Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A29%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20Efficient%20Superconducting%20Neural%20Networks%20for%20High-Speed%20Intellectual%20Data%20Processing%20Systems&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Klenov,%20Nikolay%20V.&rft.date=2018-10-01&rft.volume=28&rft.issue=7&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2018.2836903&rft_dat=%3Cproquest_RIE%3E2117130108%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117130108&rft_id=info:pmid/&rft_ieee_id=8359347&rfr_iscdi=true