Mechanical Properties of ITER CICC Jacket in China

The ITER magnet system is made up of four main subsystems: 18 toroidal field (TF) coils, a six-module central solenoid coil, 6 poloidal field (PF) coils, and 18 correction coils (CCs). The Feeder system with its main busbar and correction coil busbar represents one of the main magnet components as w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2018-04, Vol.28 (3), p.1-5
Hauptverfasser: Li, Xiang-Bin, Jin, Huan, Qin, Jing-Gang, Wu, Yu, Li, Laifeng, Wang, Kun, Ji, Hui, Liu, Sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 3
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 28
creator Li, Xiang-Bin
Jin, Huan
Qin, Jing-Gang
Wu, Yu
Li, Laifeng
Wang, Kun
Ji, Hui
Liu, Sheng
description The ITER magnet system is made up of four main subsystems: 18 toroidal field (TF) coils, a six-module central solenoid coil, 6 poloidal field (PF) coils, and 18 correction coils (CCs). The Feeder system with its main busbar and correction coil busbar represents one of the main magnet components as well. All coils and busbars with different dimensions used cable-in-conduit conductors (CICCs). China needs to provide six different types of conductors. The ITER CICCs consist of a cable made of Nb3Sn or Nb-Ti strands inserted in a stainless steel tube (called jacket or conduit). Depending on the coil type, the jacket material is either made of a low carbon AISI 316LN (for TF coil) or AISI 316L grade stainless steels (for PF and CC coils, etc). Mechanical properties of base material need to be tested at room and/or cryogenic temperature under predefined mechanical deformation and heat treatment conditions. This paper concerns mechanical tests on the jacket materials, including static tensile tests, fatigue crack growth rate, and fracture toughness tests.
doi_str_mv 10.1109/TASC.2018.2798639
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TASC_2018_2798639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8270705</ieee_id><sourcerecordid>10_1109_TASC_2018_2798639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-7d1cf38cad905572fa6b7cfeca639b1883a99bd6dbc5e3e4c8d5867d4d0c50d23</originalsourceid><addsrcrecordid>eNo9j0tOwzAYhC0EEqVwAMTGF0jxI39sLyurQFARCMI6cvxQDSWp7Gy4PYlasZpZzIzmQ-iWkhWlRN036w-9YoTKFRNKVlydoQUFkAUDCueTJ0ALyRi_RFc5fxFCS1nCArEXb3emj9bs8VsaDj6N0Wc8BFw3m3esa63xs7HffsSxx3oXe3ONLoLZZ39z0iX6fNg0-qnYvj7Wer0tLKtgLISjNnBpjVMEQLBgqk7Y4K2Z3nVUSm6U6lzlOgue-9JKB7ISrnTEAnGMLxE97to05Jx8aA8p_pj021LSztDtDN3O0O0JeurcHTvRe_-fl0wQQYD_AduWUeY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mechanical Properties of ITER CICC Jacket in China</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Xiang-Bin ; Jin, Huan ; Qin, Jing-Gang ; Wu, Yu ; Li, Laifeng ; Wang, Kun ; Ji, Hui ; Liu, Sheng</creator><creatorcontrib>Li, Xiang-Bin ; Jin, Huan ; Qin, Jing-Gang ; Wu, Yu ; Li, Laifeng ; Wang, Kun ; Ji, Hui ; Liu, Sheng</creatorcontrib><description>The ITER magnet system is made up of four main subsystems: 18 toroidal field (TF) coils, a six-module central solenoid coil, 6 poloidal field (PF) coils, and 18 correction coils (CCs). The Feeder system with its main busbar and correction coil busbar represents one of the main magnet components as well. All coils and busbars with different dimensions used cable-in-conduit conductors (CICCs). China needs to provide six different types of conductors. The ITER CICCs consist of a cable made of Nb3Sn or Nb-Ti strands inserted in a stainless steel tube (called jacket or conduit). Depending on the coil type, the jacket material is either made of a low carbon AISI 316LN (for TF coil) or AISI 316L grade stainless steels (for PF and CC coils, etc). Mechanical properties of base material need to be tested at room and/or cryogenic temperature under predefined mechanical deformation and heat treatment conditions. This paper concerns mechanical tests on the jacket materials, including static tensile tests, fatigue crack growth rate, and fracture toughness tests.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2018.2798639</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Coils ; conductor jacket ; Conductors ; Cryogenics ; Heating systems ; ITER ; Mechanical factors ; mechanical properties ; Superconducting cables</subject><ispartof>IEEE transactions on applied superconductivity, 2018-04, Vol.28 (3), p.1-5</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-7d1cf38cad905572fa6b7cfeca639b1883a99bd6dbc5e3e4c8d5867d4d0c50d23</citedby><cites>FETCH-LOGICAL-c265t-7d1cf38cad905572fa6b7cfeca639b1883a99bd6dbc5e3e4c8d5867d4d0c50d23</cites><orcidid>0000-0002-1737-0214 ; 0000-0002-5652-3447</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8270705$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8270705$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Xiang-Bin</creatorcontrib><creatorcontrib>Jin, Huan</creatorcontrib><creatorcontrib>Qin, Jing-Gang</creatorcontrib><creatorcontrib>Wu, Yu</creatorcontrib><creatorcontrib>Li, Laifeng</creatorcontrib><creatorcontrib>Wang, Kun</creatorcontrib><creatorcontrib>Ji, Hui</creatorcontrib><creatorcontrib>Liu, Sheng</creatorcontrib><title>Mechanical Properties of ITER CICC Jacket in China</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The ITER magnet system is made up of four main subsystems: 18 toroidal field (TF) coils, a six-module central solenoid coil, 6 poloidal field (PF) coils, and 18 correction coils (CCs). The Feeder system with its main busbar and correction coil busbar represents one of the main magnet components as well. All coils and busbars with different dimensions used cable-in-conduit conductors (CICCs). China needs to provide six different types of conductors. The ITER CICCs consist of a cable made of Nb3Sn or Nb-Ti strands inserted in a stainless steel tube (called jacket or conduit). Depending on the coil type, the jacket material is either made of a low carbon AISI 316LN (for TF coil) or AISI 316L grade stainless steels (for PF and CC coils, etc). Mechanical properties of base material need to be tested at room and/or cryogenic temperature under predefined mechanical deformation and heat treatment conditions. This paper concerns mechanical tests on the jacket materials, including static tensile tests, fatigue crack growth rate, and fracture toughness tests.</description><subject>Coils</subject><subject>conductor jacket</subject><subject>Conductors</subject><subject>Cryogenics</subject><subject>Heating systems</subject><subject>ITER</subject><subject>Mechanical factors</subject><subject>mechanical properties</subject><subject>Superconducting cables</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j0tOwzAYhC0EEqVwAMTGF0jxI39sLyurQFARCMI6cvxQDSWp7Gy4PYlasZpZzIzmQ-iWkhWlRN036w-9YoTKFRNKVlydoQUFkAUDCueTJ0ALyRi_RFc5fxFCS1nCArEXb3emj9bs8VsaDj6N0Wc8BFw3m3esa63xs7HffsSxx3oXe3ONLoLZZ39z0iX6fNg0-qnYvj7Wer0tLKtgLISjNnBpjVMEQLBgqk7Y4K2Z3nVUSm6U6lzlOgue-9JKB7ISrnTEAnGMLxE97to05Jx8aA8p_pj021LSztDtDN3O0O0JeurcHTvRe_-fl0wQQYD_AduWUeY</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Li, Xiang-Bin</creator><creator>Jin, Huan</creator><creator>Qin, Jing-Gang</creator><creator>Wu, Yu</creator><creator>Li, Laifeng</creator><creator>Wang, Kun</creator><creator>Ji, Hui</creator><creator>Liu, Sheng</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1737-0214</orcidid><orcidid>https://orcid.org/0000-0002-5652-3447</orcidid></search><sort><creationdate>201804</creationdate><title>Mechanical Properties of ITER CICC Jacket in China</title><author>Li, Xiang-Bin ; Jin, Huan ; Qin, Jing-Gang ; Wu, Yu ; Li, Laifeng ; Wang, Kun ; Ji, Hui ; Liu, Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-7d1cf38cad905572fa6b7cfeca639b1883a99bd6dbc5e3e4c8d5867d4d0c50d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Coils</topic><topic>conductor jacket</topic><topic>Conductors</topic><topic>Cryogenics</topic><topic>Heating systems</topic><topic>ITER</topic><topic>Mechanical factors</topic><topic>mechanical properties</topic><topic>Superconducting cables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiang-Bin</creatorcontrib><creatorcontrib>Jin, Huan</creatorcontrib><creatorcontrib>Qin, Jing-Gang</creatorcontrib><creatorcontrib>Wu, Yu</creatorcontrib><creatorcontrib>Li, Laifeng</creatorcontrib><creatorcontrib>Wang, Kun</creatorcontrib><creatorcontrib>Ji, Hui</creatorcontrib><creatorcontrib>Liu, Sheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Xiang-Bin</au><au>Jin, Huan</au><au>Qin, Jing-Gang</au><au>Wu, Yu</au><au>Li, Laifeng</au><au>Wang, Kun</au><au>Ji, Hui</au><au>Liu, Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical Properties of ITER CICC Jacket in China</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2018-04</date><risdate>2018</risdate><volume>28</volume><issue>3</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The ITER magnet system is made up of four main subsystems: 18 toroidal field (TF) coils, a six-module central solenoid coil, 6 poloidal field (PF) coils, and 18 correction coils (CCs). The Feeder system with its main busbar and correction coil busbar represents one of the main magnet components as well. All coils and busbars with different dimensions used cable-in-conduit conductors (CICCs). China needs to provide six different types of conductors. The ITER CICCs consist of a cable made of Nb3Sn or Nb-Ti strands inserted in a stainless steel tube (called jacket or conduit). Depending on the coil type, the jacket material is either made of a low carbon AISI 316LN (for TF coil) or AISI 316L grade stainless steels (for PF and CC coils, etc). Mechanical properties of base material need to be tested at room and/or cryogenic temperature under predefined mechanical deformation and heat treatment conditions. This paper concerns mechanical tests on the jacket materials, including static tensile tests, fatigue crack growth rate, and fracture toughness tests.</abstract><pub>IEEE</pub><doi>10.1109/TASC.2018.2798639</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-1737-0214</orcidid><orcidid>https://orcid.org/0000-0002-5652-3447</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2018-04, Vol.28 (3), p.1-5
issn 1051-8223
1558-2515
language eng
recordid cdi_crossref_primary_10_1109_TASC_2018_2798639
source IEEE Electronic Library (IEL)
subjects Coils
conductor jacket
Conductors
Cryogenics
Heating systems
ITER
Mechanical factors
mechanical properties
Superconducting cables
title Mechanical Properties of ITER CICC Jacket in China
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T19%3A30%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20Properties%20of%20ITER%20CICC%20Jacket%20in%20China&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Li,%20Xiang-Bin&rft.date=2018-04&rft.volume=28&rft.issue=3&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2018.2798639&rft_dat=%3Ccrossref_RIE%3E10_1109_TASC_2018_2798639%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8270705&rfr_iscdi=true