Optimal Design of Tubular Transverse Flux Motors With Low Cogging Forces for Direct Drive Applications

Linear permanent magnet (PM) motors have increasingly been used in high-performance applications where high accuracy and fast dynamic response are required. However, the presence of cogging force in linear motors compromises position and speed control accuracy, which can be particularly troublesome...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2016-10, Vol.26 (7), p.1-5
Hauptverfasser: Wang, Qian, Zhao, Bo, Zhao, Hui, Li, Yong, Zou, Jibin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 7
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 26
creator Wang, Qian
Zhao, Bo
Zhao, Hui
Li, Yong
Zou, Jibin
description Linear permanent magnet (PM) motors have increasingly been used in high-performance applications where high accuracy and fast dynamic response are required. However, the presence of cogging force in linear motors compromises position and speed control accuracy, which can be particularly troublesome at low speeds. This paper presents analysis and minimization of cogging force associated with a tubular PM motor with transverse flux configuration. An analytical criterion is brought forward, which allows the impact prediction of leading design parameters on the cogging force in an accurate way. And the validity and results are verified by extensive three-dimensional numerical computations and experimental measurements. It is shown that the cogging force increases along with the PM height. And it is highlighted that the cogging force amplitude is a sinusoidal function of the stator segment length, which is quite different from that in conventional PM machines. This work has provided a basis for cogging force reduction, and will aid the design process of the transverse flux motor, especially when targeting high-performance direct drive applications.
doi_str_mv 10.1109/TASC.2016.2600104
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TASC_2016_2600104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7542539</ieee_id><sourcerecordid>4164715931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-45390e76b67a45cc6cc4f6b8eaf7460c0cc176ba044e36d8d5a33fcb2d8db4f93</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Z73aXo3MqTHZhxcuQZknNqE1N2qn_3oyJV-eF85wPHgCuMZphjOZ31eKlnBGExYwIhDBiJ2CCOS8ywjE_TRlxnBWE0HNwEeMuIaxgfALsph_ch2rh0kTXdNBbWI312KoAq6C6uDchGrhqx2_47AcfInxzwztc-y9Y-qZxXQNXPmgTofUBLl0weoDL4PYGLvq-dVoNznfxEpxZ1UZz9Ven4HV1X5WP2Xrz8FQu1pmmVAwZ43SOTC5qkSvGtRZaMyvqwiibM4E00hqnrkKMGSq2xZYrSq2uSYo1s3M6BbfHvX3wn6OJg9z5MXTppMQF5rigQpBE4SOlg48xGCv7kCSEH4mRPOiUB53yoFP-6UwzN8cZZ4z553POSPqZ_gLhy3Gb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1815183662</pqid></control><display><type>article</type><title>Optimal Design of Tubular Transverse Flux Motors With Low Cogging Forces for Direct Drive Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Qian ; Zhao, Bo ; Zhao, Hui ; Li, Yong ; Zou, Jibin</creator><creatorcontrib>Wang, Qian ; Zhao, Bo ; Zhao, Hui ; Li, Yong ; Zou, Jibin</creatorcontrib><description>Linear permanent magnet (PM) motors have increasingly been used in high-performance applications where high accuracy and fast dynamic response are required. However, the presence of cogging force in linear motors compromises position and speed control accuracy, which can be particularly troublesome at low speeds. This paper presents analysis and minimization of cogging force associated with a tubular PM motor with transverse flux configuration. An analytical criterion is brought forward, which allows the impact prediction of leading design parameters on the cogging force in an accurate way. And the validity and results are verified by extensive three-dimensional numerical computations and experimental measurements. It is shown that the cogging force increases along with the PM height. And it is highlighted that the cogging force amplitude is a sinusoidal function of the stator segment length, which is quite different from that in conventional PM machines. This work has provided a basis for cogging force reduction, and will aid the design process of the transverse flux motor, especially when targeting high-performance direct drive applications.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2016.2600104</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Air gaps ; Cogging force ; direct drive ; Force ; Forging ; Harmonic analysis ; linear machine ; Magnetic flux ; Motors ; Permanent magnet motors ; Stators ; transverse flux motor ; tubular machine</subject><ispartof>IEEE transactions on applied superconductivity, 2016-10, Vol.26 (7), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-45390e76b67a45cc6cc4f6b8eaf7460c0cc176ba044e36d8d5a33fcb2d8db4f93</citedby><cites>FETCH-LOGICAL-c336t-45390e76b67a45cc6cc4f6b8eaf7460c0cc176ba044e36d8d5a33fcb2d8db4f93</cites><orcidid>0000-0002-0141-7647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7542539$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7542539$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Zhao, Bo</creatorcontrib><creatorcontrib>Zhao, Hui</creatorcontrib><creatorcontrib>Li, Yong</creatorcontrib><creatorcontrib>Zou, Jibin</creatorcontrib><title>Optimal Design of Tubular Transverse Flux Motors With Low Cogging Forces for Direct Drive Applications</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>Linear permanent magnet (PM) motors have increasingly been used in high-performance applications where high accuracy and fast dynamic response are required. However, the presence of cogging force in linear motors compromises position and speed control accuracy, which can be particularly troublesome at low speeds. This paper presents analysis and minimization of cogging force associated with a tubular PM motor with transverse flux configuration. An analytical criterion is brought forward, which allows the impact prediction of leading design parameters on the cogging force in an accurate way. And the validity and results are verified by extensive three-dimensional numerical computations and experimental measurements. It is shown that the cogging force increases along with the PM height. And it is highlighted that the cogging force amplitude is a sinusoidal function of the stator segment length, which is quite different from that in conventional PM machines. This work has provided a basis for cogging force reduction, and will aid the design process of the transverse flux motor, especially when targeting high-performance direct drive applications.</description><subject>Air gaps</subject><subject>Cogging force</subject><subject>direct drive</subject><subject>Force</subject><subject>Forging</subject><subject>Harmonic analysis</subject><subject>linear machine</subject><subject>Magnetic flux</subject><subject>Motors</subject><subject>Permanent magnet motors</subject><subject>Stators</subject><subject>transverse flux motor</subject><subject>tubular machine</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Z73aXo3MqTHZhxcuQZknNqE1N2qn_3oyJV-eF85wPHgCuMZphjOZ31eKlnBGExYwIhDBiJ2CCOS8ywjE_TRlxnBWE0HNwEeMuIaxgfALsph_ch2rh0kTXdNBbWI312KoAq6C6uDchGrhqx2_47AcfInxzwztc-y9Y-qZxXQNXPmgTofUBLl0weoDL4PYGLvq-dVoNznfxEpxZ1UZz9Ven4HV1X5WP2Xrz8FQu1pmmVAwZ43SOTC5qkSvGtRZaMyvqwiibM4E00hqnrkKMGSq2xZYrSq2uSYo1s3M6BbfHvX3wn6OJg9z5MXTppMQF5rigQpBE4SOlg48xGCv7kCSEH4mRPOiUB53yoFP-6UwzN8cZZ4z553POSPqZ_gLhy3Gb</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Wang, Qian</creator><creator>Zhao, Bo</creator><creator>Zhao, Hui</creator><creator>Li, Yong</creator><creator>Zou, Jibin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0141-7647</orcidid></search><sort><creationdate>20161001</creationdate><title>Optimal Design of Tubular Transverse Flux Motors With Low Cogging Forces for Direct Drive Applications</title><author>Wang, Qian ; Zhao, Bo ; Zhao, Hui ; Li, Yong ; Zou, Jibin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-45390e76b67a45cc6cc4f6b8eaf7460c0cc176ba044e36d8d5a33fcb2d8db4f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Air gaps</topic><topic>Cogging force</topic><topic>direct drive</topic><topic>Force</topic><topic>Forging</topic><topic>Harmonic analysis</topic><topic>linear machine</topic><topic>Magnetic flux</topic><topic>Motors</topic><topic>Permanent magnet motors</topic><topic>Stators</topic><topic>transverse flux motor</topic><topic>tubular machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Zhao, Bo</creatorcontrib><creatorcontrib>Zhao, Hui</creatorcontrib><creatorcontrib>Li, Yong</creatorcontrib><creatorcontrib>Zou, Jibin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Qian</au><au>Zhao, Bo</au><au>Zhao, Hui</au><au>Li, Yong</au><au>Zou, Jibin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Design of Tubular Transverse Flux Motors With Low Cogging Forces for Direct Drive Applications</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>26</volume><issue>7</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>Linear permanent magnet (PM) motors have increasingly been used in high-performance applications where high accuracy and fast dynamic response are required. However, the presence of cogging force in linear motors compromises position and speed control accuracy, which can be particularly troublesome at low speeds. This paper presents analysis and minimization of cogging force associated with a tubular PM motor with transverse flux configuration. An analytical criterion is brought forward, which allows the impact prediction of leading design parameters on the cogging force in an accurate way. And the validity and results are verified by extensive three-dimensional numerical computations and experimental measurements. It is shown that the cogging force increases along with the PM height. And it is highlighted that the cogging force amplitude is a sinusoidal function of the stator segment length, which is quite different from that in conventional PM machines. This work has provided a basis for cogging force reduction, and will aid the design process of the transverse flux motor, especially when targeting high-performance direct drive applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2016.2600104</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-0141-7647</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2016-10, Vol.26 (7), p.1-5
issn 1051-8223
1558-2515
language eng
recordid cdi_crossref_primary_10_1109_TASC_2016_2600104
source IEEE Electronic Library (IEL)
subjects Air gaps
Cogging force
direct drive
Force
Forging
Harmonic analysis
linear machine
Magnetic flux
Motors
Permanent magnet motors
Stators
transverse flux motor
tubular machine
title Optimal Design of Tubular Transverse Flux Motors With Low Cogging Forces for Direct Drive Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A05%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Design%20of%20Tubular%20Transverse%20Flux%20Motors%20With%20Low%20Cogging%20Forces%20for%20Direct%20Drive%20Applications&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Wang,%20Qian&rft.date=2016-10-01&rft.volume=26&rft.issue=7&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2016.2600104&rft_dat=%3Cproquest_RIE%3E4164715931%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1815183662&rft_id=info:pmid/&rft_ieee_id=7542539&rfr_iscdi=true