Design of a MgB2 Superconducting Synchronous Generator
A superconducting synchronous generator (SSG) is designed. The magnesium diboride (MgB 2 ) superconducting coils are employed as the field windings. The stator is composed of conventional copper coils and iron core, while the rotor has no iron core. The whole cooling method is adopted in this paper....
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2015-06, Vol.25 (3), p.1-4 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 25 |
creator | Wen, Cheng Hu, Minqiang Yu, Haitao Hong, Tianqi Chen, Hao Qu, Ronghai Fang, Haiyang |
description | A superconducting synchronous generator (SSG) is designed. The magnesium diboride (MgB 2 ) superconducting coils are employed as the field windings. The stator is composed of conventional copper coils and iron core, while the rotor has no iron core. The whole cooling method is adopted in this paper. The temperature of stator area is 70~100 K. The operating temperature of rotor area is 20 K. The thermal barrier is not placed between the stator and the rotor as compared with the prior HTS generator, so the small air gap width would be possible. To study the electromagnetic characteristics of SSG, finite element method (FEM) is implemented to optimize the SSG and obtain the performance of the initial and optimized SSG. The results indicate that the optimized model has better performance. |
doi_str_mv | 10.1109/TASC.2014.2385483 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TASC_2014_2385483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6995991</ieee_id><sourcerecordid>10_1109_TASC_2014_2385483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-e4d255124da55b35cdc716d82883e0142c63863038c2ab319882237bf4234e7d3</originalsourceid><addsrcrecordid>eNo9j8FOwzAQRC0EEqXwAYhLfiDBu_Y6zrEUWpCKOKScI8dxQhAklZ0c-vckasVp5jAzmsfYPfAEgGeP-1W-TpCDTFBoklpcsAUQ6RgJ6HLynCDWiOKa3YTwzaeklrRg6tmFtumivo5M9N48YZSPB-dt31WjHdquifJjZ7983_VjiLauc94Mvb9lV7X5Ce7urEv2uXnZr1_j3cf2bb3axRYVDbGTFRIBysoQlYJsZVNQlUathZsuoFVCK8GFtmhKAZmeL6ZlLVFIl1ZiyeC0a30fgnd1cfDtr_HHAngxgxczeDGDF2fwqfNw6rTOuf-8yjLKMhB_ccdSpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Design of a MgB2 Superconducting Synchronous Generator</title><source>IEEE Electronic Library (IEL)</source><creator>Wen, Cheng ; Hu, Minqiang ; Yu, Haitao ; Hong, Tianqi ; Chen, Hao ; Qu, Ronghai ; Fang, Haiyang</creator><creatorcontrib>Wen, Cheng ; Hu, Minqiang ; Yu, Haitao ; Hong, Tianqi ; Chen, Hao ; Qu, Ronghai ; Fang, Haiyang</creatorcontrib><description>A superconducting synchronous generator (SSG) is designed. The magnesium diboride (MgB 2 ) superconducting coils are employed as the field windings. The stator is composed of conventional copper coils and iron core, while the rotor has no iron core. The whole cooling method is adopted in this paper. The temperature of stator area is 70~100 K. The operating temperature of rotor area is 20 K. The thermal barrier is not placed between the stator and the rotor as compared with the prior HTS generator, so the small air gap width would be possible. To study the electromagnetic characteristics of SSG, finite element method (FEM) is implemented to optimize the SSG and obtain the performance of the initial and optimized SSG. The results indicate that the optimized model has better performance.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2014.2385483</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Coils ; cooling method ; finite element method ; Forging ; High-temperature superconductors ; MgB2 field winding ; Rotors ; Stator cores ; Stator windings ; Superconducting synchronous generator</subject><ispartof>IEEE transactions on applied superconductivity, 2015-06, Vol.25 (3), p.1-4</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-e4d255124da55b35cdc716d82883e0142c63863038c2ab319882237bf4234e7d3</citedby><cites>FETCH-LOGICAL-c265t-e4d255124da55b35cdc716d82883e0142c63863038c2ab319882237bf4234e7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6995991$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6995991$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wen, Cheng</creatorcontrib><creatorcontrib>Hu, Minqiang</creatorcontrib><creatorcontrib>Yu, Haitao</creatorcontrib><creatorcontrib>Hong, Tianqi</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Qu, Ronghai</creatorcontrib><creatorcontrib>Fang, Haiyang</creatorcontrib><title>Design of a MgB2 Superconducting Synchronous Generator</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>A superconducting synchronous generator (SSG) is designed. The magnesium diboride (MgB 2 ) superconducting coils are employed as the field windings. The stator is composed of conventional copper coils and iron core, while the rotor has no iron core. The whole cooling method is adopted in this paper. The temperature of stator area is 70~100 K. The operating temperature of rotor area is 20 K. The thermal barrier is not placed between the stator and the rotor as compared with the prior HTS generator, so the small air gap width would be possible. To study the electromagnetic characteristics of SSG, finite element method (FEM) is implemented to optimize the SSG and obtain the performance of the initial and optimized SSG. The results indicate that the optimized model has better performance.</description><subject>Coils</subject><subject>cooling method</subject><subject>finite element method</subject><subject>Forging</subject><subject>High-temperature superconductors</subject><subject>MgB2 field winding</subject><subject>Rotors</subject><subject>Stator cores</subject><subject>Stator windings</subject><subject>Superconducting synchronous generator</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j8FOwzAQRC0EEqXwAYhLfiDBu_Y6zrEUWpCKOKScI8dxQhAklZ0c-vckasVp5jAzmsfYPfAEgGeP-1W-TpCDTFBoklpcsAUQ6RgJ6HLynCDWiOKa3YTwzaeklrRg6tmFtumivo5M9N48YZSPB-dt31WjHdquifJjZ7983_VjiLauc94Mvb9lV7X5Ce7urEv2uXnZr1_j3cf2bb3axRYVDbGTFRIBysoQlYJsZVNQlUathZsuoFVCK8GFtmhKAZmeL6ZlLVFIl1ZiyeC0a30fgnd1cfDtr_HHAngxgxczeDGDF2fwqfNw6rTOuf-8yjLKMhB_ccdSpg</recordid><startdate>201506</startdate><enddate>201506</enddate><creator>Wen, Cheng</creator><creator>Hu, Minqiang</creator><creator>Yu, Haitao</creator><creator>Hong, Tianqi</creator><creator>Chen, Hao</creator><creator>Qu, Ronghai</creator><creator>Fang, Haiyang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201506</creationdate><title>Design of a MgB2 Superconducting Synchronous Generator</title><author>Wen, Cheng ; Hu, Minqiang ; Yu, Haitao ; Hong, Tianqi ; Chen, Hao ; Qu, Ronghai ; Fang, Haiyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-e4d255124da55b35cdc716d82883e0142c63863038c2ab319882237bf4234e7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Coils</topic><topic>cooling method</topic><topic>finite element method</topic><topic>Forging</topic><topic>High-temperature superconductors</topic><topic>MgB2 field winding</topic><topic>Rotors</topic><topic>Stator cores</topic><topic>Stator windings</topic><topic>Superconducting synchronous generator</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Cheng</creatorcontrib><creatorcontrib>Hu, Minqiang</creatorcontrib><creatorcontrib>Yu, Haitao</creatorcontrib><creatorcontrib>Hong, Tianqi</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Qu, Ronghai</creatorcontrib><creatorcontrib>Fang, Haiyang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wen, Cheng</au><au>Hu, Minqiang</au><au>Yu, Haitao</au><au>Hong, Tianqi</au><au>Chen, Hao</au><au>Qu, Ronghai</au><au>Fang, Haiyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of a MgB2 Superconducting Synchronous Generator</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2015-06</date><risdate>2015</risdate><volume>25</volume><issue>3</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>A superconducting synchronous generator (SSG) is designed. The magnesium diboride (MgB 2 ) superconducting coils are employed as the field windings. The stator is composed of conventional copper coils and iron core, while the rotor has no iron core. The whole cooling method is adopted in this paper. The temperature of stator area is 70~100 K. The operating temperature of rotor area is 20 K. The thermal barrier is not placed between the stator and the rotor as compared with the prior HTS generator, so the small air gap width would be possible. To study the electromagnetic characteristics of SSG, finite element method (FEM) is implemented to optimize the SSG and obtain the performance of the initial and optimized SSG. The results indicate that the optimized model has better performance.</abstract><pub>IEEE</pub><doi>10.1109/TASC.2014.2385483</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2015-06, Vol.25 (3), p.1-4 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TASC_2014_2385483 |
source | IEEE Electronic Library (IEL) |
subjects | Coils cooling method finite element method Forging High-temperature superconductors MgB2 field winding Rotors Stator cores Stator windings Superconducting synchronous generator |
title | Design of a MgB2 Superconducting Synchronous Generator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A27%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20a%20MgB2%20Superconducting%20Synchronous%20Generator&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Wen,%20Cheng&rft.date=2015-06&rft.volume=25&rft.issue=3&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2014.2385483&rft_dat=%3Ccrossref_RIE%3E10_1109_TASC_2014_2385483%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6995991&rfr_iscdi=true |