Design of a MgB2 Superconducting Synchronous Generator

A superconducting synchronous generator (SSG) is designed. The magnesium diboride (MgB 2 ) superconducting coils are employed as the field windings. The stator is composed of conventional copper coils and iron core, while the rotor has no iron core. The whole cooling method is adopted in this paper....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2015-06, Vol.25 (3), p.1-4
Hauptverfasser: Wen, Cheng, Hu, Minqiang, Yu, Haitao, Hong, Tianqi, Chen, Hao, Qu, Ronghai, Fang, Haiyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue 3
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 25
creator Wen, Cheng
Hu, Minqiang
Yu, Haitao
Hong, Tianqi
Chen, Hao
Qu, Ronghai
Fang, Haiyang
description A superconducting synchronous generator (SSG) is designed. The magnesium diboride (MgB 2 ) superconducting coils are employed as the field windings. The stator is composed of conventional copper coils and iron core, while the rotor has no iron core. The whole cooling method is adopted in this paper. The temperature of stator area is 70~100 K. The operating temperature of rotor area is 20 K. The thermal barrier is not placed between the stator and the rotor as compared with the prior HTS generator, so the small air gap width would be possible. To study the electromagnetic characteristics of SSG, finite element method (FEM) is implemented to optimize the SSG and obtain the performance of the initial and optimized SSG. The results indicate that the optimized model has better performance.
doi_str_mv 10.1109/TASC.2014.2385483
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TASC_2014_2385483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6995991</ieee_id><sourcerecordid>10_1109_TASC_2014_2385483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-e4d255124da55b35cdc716d82883e0142c63863038c2ab319882237bf4234e7d3</originalsourceid><addsrcrecordid>eNo9j8FOwzAQRC0EEqXwAYhLfiDBu_Y6zrEUWpCKOKScI8dxQhAklZ0c-vckasVp5jAzmsfYPfAEgGeP-1W-TpCDTFBoklpcsAUQ6RgJ6HLynCDWiOKa3YTwzaeklrRg6tmFtumivo5M9N48YZSPB-dt31WjHdquifJjZ7983_VjiLauc94Mvb9lV7X5Ce7urEv2uXnZr1_j3cf2bb3axRYVDbGTFRIBysoQlYJsZVNQlUathZsuoFVCK8GFtmhKAZmeL6ZlLVFIl1ZiyeC0a30fgnd1cfDtr_HHAngxgxczeDGDF2fwqfNw6rTOuf-8yjLKMhB_ccdSpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Design of a MgB2 Superconducting Synchronous Generator</title><source>IEEE Electronic Library (IEL)</source><creator>Wen, Cheng ; Hu, Minqiang ; Yu, Haitao ; Hong, Tianqi ; Chen, Hao ; Qu, Ronghai ; Fang, Haiyang</creator><creatorcontrib>Wen, Cheng ; Hu, Minqiang ; Yu, Haitao ; Hong, Tianqi ; Chen, Hao ; Qu, Ronghai ; Fang, Haiyang</creatorcontrib><description>A superconducting synchronous generator (SSG) is designed. The magnesium diboride (MgB 2 ) superconducting coils are employed as the field windings. The stator is composed of conventional copper coils and iron core, while the rotor has no iron core. The whole cooling method is adopted in this paper. The temperature of stator area is 70~100 K. The operating temperature of rotor area is 20 K. The thermal barrier is not placed between the stator and the rotor as compared with the prior HTS generator, so the small air gap width would be possible. To study the electromagnetic characteristics of SSG, finite element method (FEM) is implemented to optimize the SSG and obtain the performance of the initial and optimized SSG. The results indicate that the optimized model has better performance.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2014.2385483</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Coils ; cooling method ; finite element method ; Forging ; High-temperature superconductors ; MgB2 field winding ; Rotors ; Stator cores ; Stator windings ; Superconducting synchronous generator</subject><ispartof>IEEE transactions on applied superconductivity, 2015-06, Vol.25 (3), p.1-4</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-e4d255124da55b35cdc716d82883e0142c63863038c2ab319882237bf4234e7d3</citedby><cites>FETCH-LOGICAL-c265t-e4d255124da55b35cdc716d82883e0142c63863038c2ab319882237bf4234e7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6995991$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6995991$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wen, Cheng</creatorcontrib><creatorcontrib>Hu, Minqiang</creatorcontrib><creatorcontrib>Yu, Haitao</creatorcontrib><creatorcontrib>Hong, Tianqi</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Qu, Ronghai</creatorcontrib><creatorcontrib>Fang, Haiyang</creatorcontrib><title>Design of a MgB2 Superconducting Synchronous Generator</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>A superconducting synchronous generator (SSG) is designed. The magnesium diboride (MgB 2 ) superconducting coils are employed as the field windings. The stator is composed of conventional copper coils and iron core, while the rotor has no iron core. The whole cooling method is adopted in this paper. The temperature of stator area is 70~100 K. The operating temperature of rotor area is 20 K. The thermal barrier is not placed between the stator and the rotor as compared with the prior HTS generator, so the small air gap width would be possible. To study the electromagnetic characteristics of SSG, finite element method (FEM) is implemented to optimize the SSG and obtain the performance of the initial and optimized SSG. The results indicate that the optimized model has better performance.</description><subject>Coils</subject><subject>cooling method</subject><subject>finite element method</subject><subject>Forging</subject><subject>High-temperature superconductors</subject><subject>MgB2 field winding</subject><subject>Rotors</subject><subject>Stator cores</subject><subject>Stator windings</subject><subject>Superconducting synchronous generator</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j8FOwzAQRC0EEqXwAYhLfiDBu_Y6zrEUWpCKOKScI8dxQhAklZ0c-vckasVp5jAzmsfYPfAEgGeP-1W-TpCDTFBoklpcsAUQ6RgJ6HLynCDWiOKa3YTwzaeklrRg6tmFtumivo5M9N48YZSPB-dt31WjHdquifJjZ7983_VjiLauc94Mvb9lV7X5Ce7urEv2uXnZr1_j3cf2bb3axRYVDbGTFRIBysoQlYJsZVNQlUathZsuoFVCK8GFtmhKAZmeL6ZlLVFIl1ZiyeC0a30fgnd1cfDtr_HHAngxgxczeDGDF2fwqfNw6rTOuf-8yjLKMhB_ccdSpg</recordid><startdate>201506</startdate><enddate>201506</enddate><creator>Wen, Cheng</creator><creator>Hu, Minqiang</creator><creator>Yu, Haitao</creator><creator>Hong, Tianqi</creator><creator>Chen, Hao</creator><creator>Qu, Ronghai</creator><creator>Fang, Haiyang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201506</creationdate><title>Design of a MgB2 Superconducting Synchronous Generator</title><author>Wen, Cheng ; Hu, Minqiang ; Yu, Haitao ; Hong, Tianqi ; Chen, Hao ; Qu, Ronghai ; Fang, Haiyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-e4d255124da55b35cdc716d82883e0142c63863038c2ab319882237bf4234e7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Coils</topic><topic>cooling method</topic><topic>finite element method</topic><topic>Forging</topic><topic>High-temperature superconductors</topic><topic>MgB2 field winding</topic><topic>Rotors</topic><topic>Stator cores</topic><topic>Stator windings</topic><topic>Superconducting synchronous generator</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Cheng</creatorcontrib><creatorcontrib>Hu, Minqiang</creatorcontrib><creatorcontrib>Yu, Haitao</creatorcontrib><creatorcontrib>Hong, Tianqi</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Qu, Ronghai</creatorcontrib><creatorcontrib>Fang, Haiyang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wen, Cheng</au><au>Hu, Minqiang</au><au>Yu, Haitao</au><au>Hong, Tianqi</au><au>Chen, Hao</au><au>Qu, Ronghai</au><au>Fang, Haiyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of a MgB2 Superconducting Synchronous Generator</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2015-06</date><risdate>2015</risdate><volume>25</volume><issue>3</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>A superconducting synchronous generator (SSG) is designed. The magnesium diboride (MgB 2 ) superconducting coils are employed as the field windings. The stator is composed of conventional copper coils and iron core, while the rotor has no iron core. The whole cooling method is adopted in this paper. The temperature of stator area is 70~100 K. The operating temperature of rotor area is 20 K. The thermal barrier is not placed between the stator and the rotor as compared with the prior HTS generator, so the small air gap width would be possible. To study the electromagnetic characteristics of SSG, finite element method (FEM) is implemented to optimize the SSG and obtain the performance of the initial and optimized SSG. The results indicate that the optimized model has better performance.</abstract><pub>IEEE</pub><doi>10.1109/TASC.2014.2385483</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2015-06, Vol.25 (3), p.1-4
issn 1051-8223
1558-2515
language eng
recordid cdi_crossref_primary_10_1109_TASC_2014_2385483
source IEEE Electronic Library (IEL)
subjects Coils
cooling method
finite element method
Forging
High-temperature superconductors
MgB2 field winding
Rotors
Stator cores
Stator windings
Superconducting synchronous generator
title Design of a MgB2 Superconducting Synchronous Generator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A27%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20a%20MgB2%20Superconducting%20Synchronous%20Generator&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Wen,%20Cheng&rft.date=2015-06&rft.volume=25&rft.issue=3&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2014.2385483&rft_dat=%3Ccrossref_RIE%3E10_1109_TASC_2014_2385483%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6995991&rfr_iscdi=true