Inverse-Designed Superstrate for Arbitrary Shaped-Beam Radiation Pattern Based on Inverse Scattering Method
By using inverse scattering method, an inverse design for dielectric-type superstrate of antenna is introduced to get the arbitrary shaped-beam radiation pattern in this paper. The desired radiation patterns are taken as the known information to reconstruct the permittivity distribution of the diele...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2023-05, Vol.71 (5), p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 71 |
creator | Ran, Xi Wang, Xiao-Hua Wei, Teng-Fei Qu, Shi-Wei Wang, Bing-Zhong |
description | By using inverse scattering method, an inverse design for dielectric-type superstrate of antenna is introduced to get the arbitrary shaped-beam radiation pattern in this paper. The desired radiation patterns are taken as the known information to reconstruct the permittivity distribution of the dielectric-type superstrate within a certain region. Based on the desired radiation patterns, the scattering fields in far-zone can be assumed. Therefore, according to the electromagnetic inverse scattering method, the parameters of the dielectric-type superstrate can be reconstructed. To validate the proposed method, for simplicity, three shaped-beams are considered in the two-dimensional (2D) simulation firstly. Then, the reconstructed 2D dielectric-type superstrates are directly extended to three dimensions (3D) for applications. The results by the 2D and 3D simulations are in good agreement with each other. Good shaped-beam radiation patterns are obtained as expected. In addition, from the reconstructed superstrate, it can be concluded that the inverse design method without any prior-knowledge is well beyond the ability of traditional forward design methods. Furthermore, unlike deep learning which requires datasets for training, the proposed method does not have this process, so it is also efficient. |
doi_str_mv | 10.1109/TAP.2023.3242353 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAP_2023_3242353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10041835</ieee_id><sourcerecordid>2809888307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-72659be7b5961587d3e5fd4b466ef0820954a664954b68edc1d5451ab09c852e3</originalsourceid><addsrcrecordid>eNpNUE1PAjEUbIwmInr34KGJ58W223bbI_hJgpEIJt6a7vYtLMoutsXEf28RDp5eZt7MvLxB6JKSAaVE38yH0wEjLB_kjLNc5EeoR4VQGWOMHqMeIVRlmsn3U3QWwipBrjjvoY9x-w0-QHYHoVm04PBsu0lE9DYCrjuPh75sEvI_eLa0G3DZCOwav1rX2Nh0LZ7aGMG3eGRDcifikIhn1d-maRf4GeKyc-fopLafAS4Os4_eHu7nt0_Z5OVxfDucZBXTLGYFk0KXUJRCSypU4XIQteMllxJqohjRglspeRqlVOAq6gQX1JZEV0owyPvoep-78d3XFkI0q27r23TSMEW0UionRVKRvaryXQgearPxzTr9aSgxu0pNqtTsKjWHSpPlam9pAOCfnHCq0v4XCmVyUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809888307</pqid></control><display><type>article</type><title>Inverse-Designed Superstrate for Arbitrary Shaped-Beam Radiation Pattern Based on Inverse Scattering Method</title><source>IEEE Electronic Library (IEL)</source><creator>Ran, Xi ; Wang, Xiao-Hua ; Wei, Teng-Fei ; Qu, Shi-Wei ; Wang, Bing-Zhong</creator><creatorcontrib>Ran, Xi ; Wang, Xiao-Hua ; Wei, Teng-Fei ; Qu, Shi-Wei ; Wang, Bing-Zhong</creatorcontrib><description>By using inverse scattering method, an inverse design for dielectric-type superstrate of antenna is introduced to get the arbitrary shaped-beam radiation pattern in this paper. The desired radiation patterns are taken as the known information to reconstruct the permittivity distribution of the dielectric-type superstrate within a certain region. Based on the desired radiation patterns, the scattering fields in far-zone can be assumed. Therefore, according to the electromagnetic inverse scattering method, the parameters of the dielectric-type superstrate can be reconstructed. To validate the proposed method, for simplicity, three shaped-beams are considered in the two-dimensional (2D) simulation firstly. Then, the reconstructed 2D dielectric-type superstrates are directly extended to three dimensions (3D) for applications. The results by the 2D and 3D simulations are in good agreement with each other. Good shaped-beam radiation patterns are obtained as expected. In addition, from the reconstructed superstrate, it can be concluded that the inverse design method without any prior-knowledge is well beyond the ability of traditional forward design methods. Furthermore, unlike deep learning which requires datasets for training, the proposed method does not have this process, so it is also efficient.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2023.3242353</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antenna arrays ; Antenna radiation patterns ; Beamforming ; Born iterative method ; Brain modeling ; Dielectrics ; Inverse design ; Inverse problems ; Inverse scattering ; inverse scattering method ; Optimization ; Permittivity ; Radiation ; shaped-beam radiation pattern ; superstrate ; Three-dimensional displays</subject><ispartof>IEEE transactions on antennas and propagation, 2023-05, Vol.71 (5), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-72659be7b5961587d3e5fd4b466ef0820954a664954b68edc1d5451ab09c852e3</citedby><cites>FETCH-LOGICAL-c292t-72659be7b5961587d3e5fd4b466ef0820954a664954b68edc1d5451ab09c852e3</cites><orcidid>0000-0003-0679-8925 ; 0000-0002-7246-3958 ; 0000-0001-7278-2548 ; 0000-0001-6683-9034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10041835$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10041835$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ran, Xi</creatorcontrib><creatorcontrib>Wang, Xiao-Hua</creatorcontrib><creatorcontrib>Wei, Teng-Fei</creatorcontrib><creatorcontrib>Qu, Shi-Wei</creatorcontrib><creatorcontrib>Wang, Bing-Zhong</creatorcontrib><title>Inverse-Designed Superstrate for Arbitrary Shaped-Beam Radiation Pattern Based on Inverse Scattering Method</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>By using inverse scattering method, an inverse design for dielectric-type superstrate of antenna is introduced to get the arbitrary shaped-beam radiation pattern in this paper. The desired radiation patterns are taken as the known information to reconstruct the permittivity distribution of the dielectric-type superstrate within a certain region. Based on the desired radiation patterns, the scattering fields in far-zone can be assumed. Therefore, according to the electromagnetic inverse scattering method, the parameters of the dielectric-type superstrate can be reconstructed. To validate the proposed method, for simplicity, three shaped-beams are considered in the two-dimensional (2D) simulation firstly. Then, the reconstructed 2D dielectric-type superstrates are directly extended to three dimensions (3D) for applications. The results by the 2D and 3D simulations are in good agreement with each other. Good shaped-beam radiation patterns are obtained as expected. In addition, from the reconstructed superstrate, it can be concluded that the inverse design method without any prior-knowledge is well beyond the ability of traditional forward design methods. Furthermore, unlike deep learning which requires datasets for training, the proposed method does not have this process, so it is also efficient.</description><subject>Antenna arrays</subject><subject>Antenna radiation patterns</subject><subject>Beamforming</subject><subject>Born iterative method</subject><subject>Brain modeling</subject><subject>Dielectrics</subject><subject>Inverse design</subject><subject>Inverse problems</subject><subject>Inverse scattering</subject><subject>inverse scattering method</subject><subject>Optimization</subject><subject>Permittivity</subject><subject>Radiation</subject><subject>shaped-beam radiation pattern</subject><subject>superstrate</subject><subject>Three-dimensional displays</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUE1PAjEUbIwmInr34KGJ58W223bbI_hJgpEIJt6a7vYtLMoutsXEf28RDp5eZt7MvLxB6JKSAaVE38yH0wEjLB_kjLNc5EeoR4VQGWOMHqMeIVRlmsn3U3QWwipBrjjvoY9x-w0-QHYHoVm04PBsu0lE9DYCrjuPh75sEvI_eLa0G3DZCOwav1rX2Nh0LZ7aGMG3eGRDcifikIhn1d-maRf4GeKyc-fopLafAS4Os4_eHu7nt0_Z5OVxfDucZBXTLGYFk0KXUJRCSypU4XIQteMllxJqohjRglspeRqlVOAq6gQX1JZEV0owyPvoep-78d3XFkI0q27r23TSMEW0UionRVKRvaryXQgearPxzTr9aSgxu0pNqtTsKjWHSpPlam9pAOCfnHCq0v4XCmVyUA</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Ran, Xi</creator><creator>Wang, Xiao-Hua</creator><creator>Wei, Teng-Fei</creator><creator>Qu, Shi-Wei</creator><creator>Wang, Bing-Zhong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0679-8925</orcidid><orcidid>https://orcid.org/0000-0002-7246-3958</orcidid><orcidid>https://orcid.org/0000-0001-7278-2548</orcidid><orcidid>https://orcid.org/0000-0001-6683-9034</orcidid></search><sort><creationdate>20230501</creationdate><title>Inverse-Designed Superstrate for Arbitrary Shaped-Beam Radiation Pattern Based on Inverse Scattering Method</title><author>Ran, Xi ; Wang, Xiao-Hua ; Wei, Teng-Fei ; Qu, Shi-Wei ; Wang, Bing-Zhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-72659be7b5961587d3e5fd4b466ef0820954a664954b68edc1d5451ab09c852e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antenna arrays</topic><topic>Antenna radiation patterns</topic><topic>Beamforming</topic><topic>Born iterative method</topic><topic>Brain modeling</topic><topic>Dielectrics</topic><topic>Inverse design</topic><topic>Inverse problems</topic><topic>Inverse scattering</topic><topic>inverse scattering method</topic><topic>Optimization</topic><topic>Permittivity</topic><topic>Radiation</topic><topic>shaped-beam radiation pattern</topic><topic>superstrate</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ran, Xi</creatorcontrib><creatorcontrib>Wang, Xiao-Hua</creatorcontrib><creatorcontrib>Wei, Teng-Fei</creatorcontrib><creatorcontrib>Qu, Shi-Wei</creatorcontrib><creatorcontrib>Wang, Bing-Zhong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ran, Xi</au><au>Wang, Xiao-Hua</au><au>Wei, Teng-Fei</au><au>Qu, Shi-Wei</au><au>Wang, Bing-Zhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse-Designed Superstrate for Arbitrary Shaped-Beam Radiation Pattern Based on Inverse Scattering Method</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>71</volume><issue>5</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>By using inverse scattering method, an inverse design for dielectric-type superstrate of antenna is introduced to get the arbitrary shaped-beam radiation pattern in this paper. The desired radiation patterns are taken as the known information to reconstruct the permittivity distribution of the dielectric-type superstrate within a certain region. Based on the desired radiation patterns, the scattering fields in far-zone can be assumed. Therefore, according to the electromagnetic inverse scattering method, the parameters of the dielectric-type superstrate can be reconstructed. To validate the proposed method, for simplicity, three shaped-beams are considered in the two-dimensional (2D) simulation firstly. Then, the reconstructed 2D dielectric-type superstrates are directly extended to three dimensions (3D) for applications. The results by the 2D and 3D simulations are in good agreement with each other. Good shaped-beam radiation patterns are obtained as expected. In addition, from the reconstructed superstrate, it can be concluded that the inverse design method without any prior-knowledge is well beyond the ability of traditional forward design methods. Furthermore, unlike deep learning which requires datasets for training, the proposed method does not have this process, so it is also efficient.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2023.3242353</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0679-8925</orcidid><orcidid>https://orcid.org/0000-0002-7246-3958</orcidid><orcidid>https://orcid.org/0000-0001-7278-2548</orcidid><orcidid>https://orcid.org/0000-0001-6683-9034</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2023-05, Vol.71 (5), p.1-1 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAP_2023_3242353 |
source | IEEE Electronic Library (IEL) |
subjects | Antenna arrays Antenna radiation patterns Beamforming Born iterative method Brain modeling Dielectrics Inverse design Inverse problems Inverse scattering inverse scattering method Optimization Permittivity Radiation shaped-beam radiation pattern superstrate Three-dimensional displays |
title | Inverse-Designed Superstrate for Arbitrary Shaped-Beam Radiation Pattern Based on Inverse Scattering Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A47%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse-Designed%20Superstrate%20for%20Arbitrary%20Shaped-Beam%20Radiation%20Pattern%20Based%20on%20Inverse%20Scattering%20Method&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Ran,%20Xi&rft.date=2023-05-01&rft.volume=71&rft.issue=5&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2023.3242353&rft_dat=%3Cproquest_RIE%3E2809888307%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2809888307&rft_id=info:pmid/&rft_ieee_id=10041835&rfr_iscdi=true |