Inverse-Designed Superstrate for Arbitrary Shaped-Beam Radiation Pattern Based on Inverse Scattering Method

By using inverse scattering method, an inverse design for dielectric-type superstrate of antenna is introduced to get the arbitrary shaped-beam radiation pattern in this paper. The desired radiation patterns are taken as the known information to reconstruct the permittivity distribution of the diele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2023-05, Vol.71 (5), p.1-1
Hauptverfasser: Ran, Xi, Wang, Xiao-Hua, Wei, Teng-Fei, Qu, Shi-Wei, Wang, Bing-Zhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 5
container_start_page 1
container_title IEEE transactions on antennas and propagation
container_volume 71
creator Ran, Xi
Wang, Xiao-Hua
Wei, Teng-Fei
Qu, Shi-Wei
Wang, Bing-Zhong
description By using inverse scattering method, an inverse design for dielectric-type superstrate of antenna is introduced to get the arbitrary shaped-beam radiation pattern in this paper. The desired radiation patterns are taken as the known information to reconstruct the permittivity distribution of the dielectric-type superstrate within a certain region. Based on the desired radiation patterns, the scattering fields in far-zone can be assumed. Therefore, according to the electromagnetic inverse scattering method, the parameters of the dielectric-type superstrate can be reconstructed. To validate the proposed method, for simplicity, three shaped-beams are considered in the two-dimensional (2D) simulation firstly. Then, the reconstructed 2D dielectric-type superstrates are directly extended to three dimensions (3D) for applications. The results by the 2D and 3D simulations are in good agreement with each other. Good shaped-beam radiation patterns are obtained as expected. In addition, from the reconstructed superstrate, it can be concluded that the inverse design method without any prior-knowledge is well beyond the ability of traditional forward design methods. Furthermore, unlike deep learning which requires datasets for training, the proposed method does not have this process, so it is also efficient.
doi_str_mv 10.1109/TAP.2023.3242353
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAP_2023_3242353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10041835</ieee_id><sourcerecordid>2809888307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-72659be7b5961587d3e5fd4b466ef0820954a664954b68edc1d5451ab09c852e3</originalsourceid><addsrcrecordid>eNpNUE1PAjEUbIwmInr34KGJ58W223bbI_hJgpEIJt6a7vYtLMoutsXEf28RDp5eZt7MvLxB6JKSAaVE38yH0wEjLB_kjLNc5EeoR4VQGWOMHqMeIVRlmsn3U3QWwipBrjjvoY9x-w0-QHYHoVm04PBsu0lE9DYCrjuPh75sEvI_eLa0G3DZCOwav1rX2Nh0LZ7aGMG3eGRDcifikIhn1d-maRf4GeKyc-fopLafAS4Os4_eHu7nt0_Z5OVxfDucZBXTLGYFk0KXUJRCSypU4XIQteMllxJqohjRglspeRqlVOAq6gQX1JZEV0owyPvoep-78d3XFkI0q27r23TSMEW0UionRVKRvaryXQgearPxzTr9aSgxu0pNqtTsKjWHSpPlam9pAOCfnHCq0v4XCmVyUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809888307</pqid></control><display><type>article</type><title>Inverse-Designed Superstrate for Arbitrary Shaped-Beam Radiation Pattern Based on Inverse Scattering Method</title><source>IEEE Electronic Library (IEL)</source><creator>Ran, Xi ; Wang, Xiao-Hua ; Wei, Teng-Fei ; Qu, Shi-Wei ; Wang, Bing-Zhong</creator><creatorcontrib>Ran, Xi ; Wang, Xiao-Hua ; Wei, Teng-Fei ; Qu, Shi-Wei ; Wang, Bing-Zhong</creatorcontrib><description>By using inverse scattering method, an inverse design for dielectric-type superstrate of antenna is introduced to get the arbitrary shaped-beam radiation pattern in this paper. The desired radiation patterns are taken as the known information to reconstruct the permittivity distribution of the dielectric-type superstrate within a certain region. Based on the desired radiation patterns, the scattering fields in far-zone can be assumed. Therefore, according to the electromagnetic inverse scattering method, the parameters of the dielectric-type superstrate can be reconstructed. To validate the proposed method, for simplicity, three shaped-beams are considered in the two-dimensional (2D) simulation firstly. Then, the reconstructed 2D dielectric-type superstrates are directly extended to three dimensions (3D) for applications. The results by the 2D and 3D simulations are in good agreement with each other. Good shaped-beam radiation patterns are obtained as expected. In addition, from the reconstructed superstrate, it can be concluded that the inverse design method without any prior-knowledge is well beyond the ability of traditional forward design methods. Furthermore, unlike deep learning which requires datasets for training, the proposed method does not have this process, so it is also efficient.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2023.3242353</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antenna arrays ; Antenna radiation patterns ; Beamforming ; Born iterative method ; Brain modeling ; Dielectrics ; Inverse design ; Inverse problems ; Inverse scattering ; inverse scattering method ; Optimization ; Permittivity ; Radiation ; shaped-beam radiation pattern ; superstrate ; Three-dimensional displays</subject><ispartof>IEEE transactions on antennas and propagation, 2023-05, Vol.71 (5), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-72659be7b5961587d3e5fd4b466ef0820954a664954b68edc1d5451ab09c852e3</citedby><cites>FETCH-LOGICAL-c292t-72659be7b5961587d3e5fd4b466ef0820954a664954b68edc1d5451ab09c852e3</cites><orcidid>0000-0003-0679-8925 ; 0000-0002-7246-3958 ; 0000-0001-7278-2548 ; 0000-0001-6683-9034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10041835$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10041835$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ran, Xi</creatorcontrib><creatorcontrib>Wang, Xiao-Hua</creatorcontrib><creatorcontrib>Wei, Teng-Fei</creatorcontrib><creatorcontrib>Qu, Shi-Wei</creatorcontrib><creatorcontrib>Wang, Bing-Zhong</creatorcontrib><title>Inverse-Designed Superstrate for Arbitrary Shaped-Beam Radiation Pattern Based on Inverse Scattering Method</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>By using inverse scattering method, an inverse design for dielectric-type superstrate of antenna is introduced to get the arbitrary shaped-beam radiation pattern in this paper. The desired radiation patterns are taken as the known information to reconstruct the permittivity distribution of the dielectric-type superstrate within a certain region. Based on the desired radiation patterns, the scattering fields in far-zone can be assumed. Therefore, according to the electromagnetic inverse scattering method, the parameters of the dielectric-type superstrate can be reconstructed. To validate the proposed method, for simplicity, three shaped-beams are considered in the two-dimensional (2D) simulation firstly. Then, the reconstructed 2D dielectric-type superstrates are directly extended to three dimensions (3D) for applications. The results by the 2D and 3D simulations are in good agreement with each other. Good shaped-beam radiation patterns are obtained as expected. In addition, from the reconstructed superstrate, it can be concluded that the inverse design method without any prior-knowledge is well beyond the ability of traditional forward design methods. Furthermore, unlike deep learning which requires datasets for training, the proposed method does not have this process, so it is also efficient.</description><subject>Antenna arrays</subject><subject>Antenna radiation patterns</subject><subject>Beamforming</subject><subject>Born iterative method</subject><subject>Brain modeling</subject><subject>Dielectrics</subject><subject>Inverse design</subject><subject>Inverse problems</subject><subject>Inverse scattering</subject><subject>inverse scattering method</subject><subject>Optimization</subject><subject>Permittivity</subject><subject>Radiation</subject><subject>shaped-beam radiation pattern</subject><subject>superstrate</subject><subject>Three-dimensional displays</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUE1PAjEUbIwmInr34KGJ58W223bbI_hJgpEIJt6a7vYtLMoutsXEf28RDp5eZt7MvLxB6JKSAaVE38yH0wEjLB_kjLNc5EeoR4VQGWOMHqMeIVRlmsn3U3QWwipBrjjvoY9x-w0-QHYHoVm04PBsu0lE9DYCrjuPh75sEvI_eLa0G3DZCOwav1rX2Nh0LZ7aGMG3eGRDcifikIhn1d-maRf4GeKyc-fopLafAS4Os4_eHu7nt0_Z5OVxfDucZBXTLGYFk0KXUJRCSypU4XIQteMllxJqohjRglspeRqlVOAq6gQX1JZEV0owyPvoep-78d3XFkI0q27r23TSMEW0UionRVKRvaryXQgearPxzTr9aSgxu0pNqtTsKjWHSpPlam9pAOCfnHCq0v4XCmVyUA</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Ran, Xi</creator><creator>Wang, Xiao-Hua</creator><creator>Wei, Teng-Fei</creator><creator>Qu, Shi-Wei</creator><creator>Wang, Bing-Zhong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0679-8925</orcidid><orcidid>https://orcid.org/0000-0002-7246-3958</orcidid><orcidid>https://orcid.org/0000-0001-7278-2548</orcidid><orcidid>https://orcid.org/0000-0001-6683-9034</orcidid></search><sort><creationdate>20230501</creationdate><title>Inverse-Designed Superstrate for Arbitrary Shaped-Beam Radiation Pattern Based on Inverse Scattering Method</title><author>Ran, Xi ; Wang, Xiao-Hua ; Wei, Teng-Fei ; Qu, Shi-Wei ; Wang, Bing-Zhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-72659be7b5961587d3e5fd4b466ef0820954a664954b68edc1d5451ab09c852e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antenna arrays</topic><topic>Antenna radiation patterns</topic><topic>Beamforming</topic><topic>Born iterative method</topic><topic>Brain modeling</topic><topic>Dielectrics</topic><topic>Inverse design</topic><topic>Inverse problems</topic><topic>Inverse scattering</topic><topic>inverse scattering method</topic><topic>Optimization</topic><topic>Permittivity</topic><topic>Radiation</topic><topic>shaped-beam radiation pattern</topic><topic>superstrate</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ran, Xi</creatorcontrib><creatorcontrib>Wang, Xiao-Hua</creatorcontrib><creatorcontrib>Wei, Teng-Fei</creatorcontrib><creatorcontrib>Qu, Shi-Wei</creatorcontrib><creatorcontrib>Wang, Bing-Zhong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ran, Xi</au><au>Wang, Xiao-Hua</au><au>Wei, Teng-Fei</au><au>Qu, Shi-Wei</au><au>Wang, Bing-Zhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse-Designed Superstrate for Arbitrary Shaped-Beam Radiation Pattern Based on Inverse Scattering Method</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>71</volume><issue>5</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>By using inverse scattering method, an inverse design for dielectric-type superstrate of antenna is introduced to get the arbitrary shaped-beam radiation pattern in this paper. The desired radiation patterns are taken as the known information to reconstruct the permittivity distribution of the dielectric-type superstrate within a certain region. Based on the desired radiation patterns, the scattering fields in far-zone can be assumed. Therefore, according to the electromagnetic inverse scattering method, the parameters of the dielectric-type superstrate can be reconstructed. To validate the proposed method, for simplicity, three shaped-beams are considered in the two-dimensional (2D) simulation firstly. Then, the reconstructed 2D dielectric-type superstrates are directly extended to three dimensions (3D) for applications. The results by the 2D and 3D simulations are in good agreement with each other. Good shaped-beam radiation patterns are obtained as expected. In addition, from the reconstructed superstrate, it can be concluded that the inverse design method without any prior-knowledge is well beyond the ability of traditional forward design methods. Furthermore, unlike deep learning which requires datasets for training, the proposed method does not have this process, so it is also efficient.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2023.3242353</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0679-8925</orcidid><orcidid>https://orcid.org/0000-0002-7246-3958</orcidid><orcidid>https://orcid.org/0000-0001-7278-2548</orcidid><orcidid>https://orcid.org/0000-0001-6683-9034</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2023-05, Vol.71 (5), p.1-1
issn 0018-926X
1558-2221
language eng
recordid cdi_crossref_primary_10_1109_TAP_2023_3242353
source IEEE Electronic Library (IEL)
subjects Antenna arrays
Antenna radiation patterns
Beamforming
Born iterative method
Brain modeling
Dielectrics
Inverse design
Inverse problems
Inverse scattering
inverse scattering method
Optimization
Permittivity
Radiation
shaped-beam radiation pattern
superstrate
Three-dimensional displays
title Inverse-Designed Superstrate for Arbitrary Shaped-Beam Radiation Pattern Based on Inverse Scattering Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A47%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse-Designed%20Superstrate%20for%20Arbitrary%20Shaped-Beam%20Radiation%20Pattern%20Based%20on%20Inverse%20Scattering%20Method&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Ran,%20Xi&rft.date=2023-05-01&rft.volume=71&rft.issue=5&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2023.3242353&rft_dat=%3Cproquest_RIE%3E2809888307%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2809888307&rft_id=info:pmid/&rft_ieee_id=10041835&rfr_iscdi=true