Optically Transparent Metasurface Radome for RCS Reduction and Gain Enhancement of Multifunctional Antennas
In this article, we theoretically propose and experimentally demonstrate a compact, optically transparent metasurface radome with asymmetric electromagnetic absorption for making low-radar cross section (RCS) and gain-enhanced multifunctional antennas. The proposed unseeable metasurface has a bilaye...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2023-01, Vol.71 (1), p.67-77 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 77 |
---|---|
container_issue | 1 |
container_start_page | 67 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 71 |
creator | Ha, Trung D. Zhu, Liang Alsaab, Nabeel Chen, Pai-Yen Guo, Jay L. |
description | In this article, we theoretically propose and experimentally demonstrate a compact, optically transparent metasurface radome with asymmetric electromagnetic absorption for making low-radar cross section (RCS) and gain-enhanced multifunctional antennas. The proposed unseeable metasurface has a bilayer structure consisting of periodically patterned and unpatterned transparent conductive films separated by a thin acrylic layer. Such a bilayer metasurface is highly reflective when illuminated by microwave from one side, while exhibit a high absorption when illuminated from the other side. Moreover, when the optically transparent, weather-proofing bilayer metasurface acts as a radome, it can greatly enhance the gain and reduce RCS of the solar panel-integrated microstrip antenna without affecting the performance of optical devices (e.g., photovoltaic panels, flat panel displays, or light emitting devices). We provide the analytical formulation and design guidelines for the bilayer metasurface and the integrated cavity antenna. Our experimental results show that the realized gain of the microstrip antenna can be increased by 6.1 dBi and its RCS can be reduced by more than 20 dB around the operating frequency of 8.1 GHz. The proposed low-profile, flexible, hydrophobic, and optically transparent bilayer metasurface may be beneficial for many applications, including the next-generation radomes, self-powered 5G/6G base stations, satellite communication (CubSat), and other compact, multifunctional RF and microwave modulus integrated with optical sensors, lidar, displays, and solar panels. |
doi_str_mv | 10.1109/TAP.2022.3215247 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAP_2022_3215247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9928064</ieee_id><sourcerecordid>2766631841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-e6eb1dae7b5dd8808b3a28617efa81014fd960dd11ef57794786fb593cc3de053</originalsourceid><addsrcrecordid>eNo9kEFLwzAYhoMoOKd3wUvAc2eStml6HGNOYWMyJ3gLafIFO7u0Julh_97ODU8fHzzvy8uD0D0lE0pJ-bSdvk0YYWySMpqzrLhAI5rnImGM0Us0IoSKpGT88xrdhLAb3kxk2Qh9r7tYa9U0B7z1yoVOeXARryCq0HurNOCNMu0esG093sze8QZMr2PdOqycwQtVOzx3X8pp2B-TrcWrvom17d0fpRo8dRGcU-EWXVnVBLg73zH6eJ5vZy_Jcr14nU2XiWYljQlwqKhRUFS5MUIQUaWKCU4LsErQYbg1JSfGUAo2L4oyKwS3VV6mWqcGSJ6O0eOpt_PtTw8hyl3b-2FJkKzgnKdUZHSgyInSvg3Bg5Wdr_fKHyQl8qhUDkrlUak8Kx0iD6dIDQD_eFkyQXiW_gJspXNh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766631841</pqid></control><display><type>article</type><title>Optically Transparent Metasurface Radome for RCS Reduction and Gain Enhancement of Multifunctional Antennas</title><source>IEEE Electronic Library (IEL)</source><creator>Ha, Trung D. ; Zhu, Liang ; Alsaab, Nabeel ; Chen, Pai-Yen ; Guo, Jay L.</creator><creatorcontrib>Ha, Trung D. ; Zhu, Liang ; Alsaab, Nabeel ; Chen, Pai-Yen ; Guo, Jay L.</creatorcontrib><description>In this article, we theoretically propose and experimentally demonstrate a compact, optically transparent metasurface radome with asymmetric electromagnetic absorption for making low-radar cross section (RCS) and gain-enhanced multifunctional antennas. The proposed unseeable metasurface has a bilayer structure consisting of periodically patterned and unpatterned transparent conductive films separated by a thin acrylic layer. Such a bilayer metasurface is highly reflective when illuminated by microwave from one side, while exhibit a high absorption when illuminated from the other side. Moreover, when the optically transparent, weather-proofing bilayer metasurface acts as a radome, it can greatly enhance the gain and reduce RCS of the solar panel-integrated microstrip antenna without affecting the performance of optical devices (e.g., photovoltaic panels, flat panel displays, or light emitting devices). We provide the analytical formulation and design guidelines for the bilayer metasurface and the integrated cavity antenna. Our experimental results show that the realized gain of the microstrip antenna can be increased by 6.1 dBi and its RCS can be reduced by more than 20 dB around the operating frequency of 8.1 GHz. The proposed low-profile, flexible, hydrophobic, and optically transparent bilayer metasurface may be beneficial for many applications, including the next-generation radomes, self-powered 5G/6G base stations, satellite communication (CubSat), and other compact, multifunctional RF and microwave modulus integrated with optical sensors, lidar, displays, and solar panels.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2022.3215247</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antenna radiation patterns ; Antennas ; Directive antennas ; Electromagnetic absorption ; Fabry-Perrot cavity (FPC) antennas ; Flat panel displays ; Metasurfaces ; Microstrip antennas ; Optical films ; Optical measuring instruments ; Optical reflection ; radar cross section (RCS) reduction ; Radar cross sections ; Radomes ; Satellite communications ; Solar panels ; Thin films ; transparent antennas ; Weatherproofing</subject><ispartof>IEEE transactions on antennas and propagation, 2023-01, Vol.71 (1), p.67-77</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-e6eb1dae7b5dd8808b3a28617efa81014fd960dd11ef57794786fb593cc3de053</citedby><cites>FETCH-LOGICAL-c291t-e6eb1dae7b5dd8808b3a28617efa81014fd960dd11ef57794786fb593cc3de053</cites><orcidid>0000-0002-8112-8457 ; 0000-0001-7678-0312 ; 0000-0002-3731-1246 ; 0000-0002-6868-0220</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9928064$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9928064$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ha, Trung D.</creatorcontrib><creatorcontrib>Zhu, Liang</creatorcontrib><creatorcontrib>Alsaab, Nabeel</creatorcontrib><creatorcontrib>Chen, Pai-Yen</creatorcontrib><creatorcontrib>Guo, Jay L.</creatorcontrib><title>Optically Transparent Metasurface Radome for RCS Reduction and Gain Enhancement of Multifunctional Antennas</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>In this article, we theoretically propose and experimentally demonstrate a compact, optically transparent metasurface radome with asymmetric electromagnetic absorption for making low-radar cross section (RCS) and gain-enhanced multifunctional antennas. The proposed unseeable metasurface has a bilayer structure consisting of periodically patterned and unpatterned transparent conductive films separated by a thin acrylic layer. Such a bilayer metasurface is highly reflective when illuminated by microwave from one side, while exhibit a high absorption when illuminated from the other side. Moreover, when the optically transparent, weather-proofing bilayer metasurface acts as a radome, it can greatly enhance the gain and reduce RCS of the solar panel-integrated microstrip antenna without affecting the performance of optical devices (e.g., photovoltaic panels, flat panel displays, or light emitting devices). We provide the analytical formulation and design guidelines for the bilayer metasurface and the integrated cavity antenna. Our experimental results show that the realized gain of the microstrip antenna can be increased by 6.1 dBi and its RCS can be reduced by more than 20 dB around the operating frequency of 8.1 GHz. The proposed low-profile, flexible, hydrophobic, and optically transparent bilayer metasurface may be beneficial for many applications, including the next-generation radomes, self-powered 5G/6G base stations, satellite communication (CubSat), and other compact, multifunctional RF and microwave modulus integrated with optical sensors, lidar, displays, and solar panels.</description><subject>Antenna radiation patterns</subject><subject>Antennas</subject><subject>Directive antennas</subject><subject>Electromagnetic absorption</subject><subject>Fabry-Perrot cavity (FPC) antennas</subject><subject>Flat panel displays</subject><subject>Metasurfaces</subject><subject>Microstrip antennas</subject><subject>Optical films</subject><subject>Optical measuring instruments</subject><subject>Optical reflection</subject><subject>radar cross section (RCS) reduction</subject><subject>Radar cross sections</subject><subject>Radomes</subject><subject>Satellite communications</subject><subject>Solar panels</subject><subject>Thin films</subject><subject>transparent antennas</subject><subject>Weatherproofing</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLwzAYhoMoOKd3wUvAc2eStml6HGNOYWMyJ3gLafIFO7u0Julh_97ODU8fHzzvy8uD0D0lE0pJ-bSdvk0YYWySMpqzrLhAI5rnImGM0Us0IoSKpGT88xrdhLAb3kxk2Qh9r7tYa9U0B7z1yoVOeXARryCq0HurNOCNMu0esG093sze8QZMr2PdOqycwQtVOzx3X8pp2B-TrcWrvom17d0fpRo8dRGcU-EWXVnVBLg73zH6eJ5vZy_Jcr14nU2XiWYljQlwqKhRUFS5MUIQUaWKCU4LsErQYbg1JSfGUAo2L4oyKwS3VV6mWqcGSJ6O0eOpt_PtTw8hyl3b-2FJkKzgnKdUZHSgyInSvg3Bg5Wdr_fKHyQl8qhUDkrlUak8Kx0iD6dIDQD_eFkyQXiW_gJspXNh</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Ha, Trung D.</creator><creator>Zhu, Liang</creator><creator>Alsaab, Nabeel</creator><creator>Chen, Pai-Yen</creator><creator>Guo, Jay L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8112-8457</orcidid><orcidid>https://orcid.org/0000-0001-7678-0312</orcidid><orcidid>https://orcid.org/0000-0002-3731-1246</orcidid><orcidid>https://orcid.org/0000-0002-6868-0220</orcidid></search><sort><creationdate>202301</creationdate><title>Optically Transparent Metasurface Radome for RCS Reduction and Gain Enhancement of Multifunctional Antennas</title><author>Ha, Trung D. ; Zhu, Liang ; Alsaab, Nabeel ; Chen, Pai-Yen ; Guo, Jay L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-e6eb1dae7b5dd8808b3a28617efa81014fd960dd11ef57794786fb593cc3de053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antenna radiation patterns</topic><topic>Antennas</topic><topic>Directive antennas</topic><topic>Electromagnetic absorption</topic><topic>Fabry-Perrot cavity (FPC) antennas</topic><topic>Flat panel displays</topic><topic>Metasurfaces</topic><topic>Microstrip antennas</topic><topic>Optical films</topic><topic>Optical measuring instruments</topic><topic>Optical reflection</topic><topic>radar cross section (RCS) reduction</topic><topic>Radar cross sections</topic><topic>Radomes</topic><topic>Satellite communications</topic><topic>Solar panels</topic><topic>Thin films</topic><topic>transparent antennas</topic><topic>Weatherproofing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ha, Trung D.</creatorcontrib><creatorcontrib>Zhu, Liang</creatorcontrib><creatorcontrib>Alsaab, Nabeel</creatorcontrib><creatorcontrib>Chen, Pai-Yen</creatorcontrib><creatorcontrib>Guo, Jay L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ha, Trung D.</au><au>Zhu, Liang</au><au>Alsaab, Nabeel</au><au>Chen, Pai-Yen</au><au>Guo, Jay L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optically Transparent Metasurface Radome for RCS Reduction and Gain Enhancement of Multifunctional Antennas</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2023-01</date><risdate>2023</risdate><volume>71</volume><issue>1</issue><spage>67</spage><epage>77</epage><pages>67-77</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>In this article, we theoretically propose and experimentally demonstrate a compact, optically transparent metasurface radome with asymmetric electromagnetic absorption for making low-radar cross section (RCS) and gain-enhanced multifunctional antennas. The proposed unseeable metasurface has a bilayer structure consisting of periodically patterned and unpatterned transparent conductive films separated by a thin acrylic layer. Such a bilayer metasurface is highly reflective when illuminated by microwave from one side, while exhibit a high absorption when illuminated from the other side. Moreover, when the optically transparent, weather-proofing bilayer metasurface acts as a radome, it can greatly enhance the gain and reduce RCS of the solar panel-integrated microstrip antenna without affecting the performance of optical devices (e.g., photovoltaic panels, flat panel displays, or light emitting devices). We provide the analytical formulation and design guidelines for the bilayer metasurface and the integrated cavity antenna. Our experimental results show that the realized gain of the microstrip antenna can be increased by 6.1 dBi and its RCS can be reduced by more than 20 dB around the operating frequency of 8.1 GHz. The proposed low-profile, flexible, hydrophobic, and optically transparent bilayer metasurface may be beneficial for many applications, including the next-generation radomes, self-powered 5G/6G base stations, satellite communication (CubSat), and other compact, multifunctional RF and microwave modulus integrated with optical sensors, lidar, displays, and solar panels.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2022.3215247</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8112-8457</orcidid><orcidid>https://orcid.org/0000-0001-7678-0312</orcidid><orcidid>https://orcid.org/0000-0002-3731-1246</orcidid><orcidid>https://orcid.org/0000-0002-6868-0220</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2023-01, Vol.71 (1), p.67-77 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAP_2022_3215247 |
source | IEEE Electronic Library (IEL) |
subjects | Antenna radiation patterns Antennas Directive antennas Electromagnetic absorption Fabry-Perrot cavity (FPC) antennas Flat panel displays Metasurfaces Microstrip antennas Optical films Optical measuring instruments Optical reflection radar cross section (RCS) reduction Radar cross sections Radomes Satellite communications Solar panels Thin films transparent antennas Weatherproofing |
title | Optically Transparent Metasurface Radome for RCS Reduction and Gain Enhancement of Multifunctional Antennas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T10%3A21%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optically%20Transparent%20Metasurface%20Radome%20for%20RCS%20Reduction%20and%20Gain%20Enhancement%20of%20Multifunctional%20Antennas&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Ha,%20Trung%20D.&rft.date=2023-01&rft.volume=71&rft.issue=1&rft.spage=67&rft.epage=77&rft.pages=67-77&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2022.3215247&rft_dat=%3Cproquest_RIE%3E2766631841%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766631841&rft_id=info:pmid/&rft_ieee_id=9928064&rfr_iscdi=true |