Optically Transparent Metasurface Radome for RCS Reduction and Gain Enhancement of Multifunctional Antennas

In this article, we theoretically propose and experimentally demonstrate a compact, optically transparent metasurface radome with asymmetric electromagnetic absorption for making low-radar cross section (RCS) and gain-enhanced multifunctional antennas. The proposed unseeable metasurface has a bilaye...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2023-01, Vol.71 (1), p.67-77
Hauptverfasser: Ha, Trung D., Zhu, Liang, Alsaab, Nabeel, Chen, Pai-Yen, Guo, Jay L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 77
container_issue 1
container_start_page 67
container_title IEEE transactions on antennas and propagation
container_volume 71
creator Ha, Trung D.
Zhu, Liang
Alsaab, Nabeel
Chen, Pai-Yen
Guo, Jay L.
description In this article, we theoretically propose and experimentally demonstrate a compact, optically transparent metasurface radome with asymmetric electromagnetic absorption for making low-radar cross section (RCS) and gain-enhanced multifunctional antennas. The proposed unseeable metasurface has a bilayer structure consisting of periodically patterned and unpatterned transparent conductive films separated by a thin acrylic layer. Such a bilayer metasurface is highly reflective when illuminated by microwave from one side, while exhibit a high absorption when illuminated from the other side. Moreover, when the optically transparent, weather-proofing bilayer metasurface acts as a radome, it can greatly enhance the gain and reduce RCS of the solar panel-integrated microstrip antenna without affecting the performance of optical devices (e.g., photovoltaic panels, flat panel displays, or light emitting devices). We provide the analytical formulation and design guidelines for the bilayer metasurface and the integrated cavity antenna. Our experimental results show that the realized gain of the microstrip antenna can be increased by 6.1 dBi and its RCS can be reduced by more than 20 dB around the operating frequency of 8.1 GHz. The proposed low-profile, flexible, hydrophobic, and optically transparent bilayer metasurface may be beneficial for many applications, including the next-generation radomes, self-powered 5G/6G base stations, satellite communication (CubSat), and other compact, multifunctional RF and microwave modulus integrated with optical sensors, lidar, displays, and solar panels.
doi_str_mv 10.1109/TAP.2022.3215247
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAP_2022_3215247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9928064</ieee_id><sourcerecordid>2766631841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-e6eb1dae7b5dd8808b3a28617efa81014fd960dd11ef57794786fb593cc3de053</originalsourceid><addsrcrecordid>eNo9kEFLwzAYhoMoOKd3wUvAc2eStml6HGNOYWMyJ3gLafIFO7u0Julh_97ODU8fHzzvy8uD0D0lE0pJ-bSdvk0YYWySMpqzrLhAI5rnImGM0Us0IoSKpGT88xrdhLAb3kxk2Qh9r7tYa9U0B7z1yoVOeXARryCq0HurNOCNMu0esG093sze8QZMr2PdOqycwQtVOzx3X8pp2B-TrcWrvom17d0fpRo8dRGcU-EWXVnVBLg73zH6eJ5vZy_Jcr14nU2XiWYljQlwqKhRUFS5MUIQUaWKCU4LsErQYbg1JSfGUAo2L4oyKwS3VV6mWqcGSJ6O0eOpt_PtTw8hyl3b-2FJkKzgnKdUZHSgyInSvg3Bg5Wdr_fKHyQl8qhUDkrlUak8Kx0iD6dIDQD_eFkyQXiW_gJspXNh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766631841</pqid></control><display><type>article</type><title>Optically Transparent Metasurface Radome for RCS Reduction and Gain Enhancement of Multifunctional Antennas</title><source>IEEE Electronic Library (IEL)</source><creator>Ha, Trung D. ; Zhu, Liang ; Alsaab, Nabeel ; Chen, Pai-Yen ; Guo, Jay L.</creator><creatorcontrib>Ha, Trung D. ; Zhu, Liang ; Alsaab, Nabeel ; Chen, Pai-Yen ; Guo, Jay L.</creatorcontrib><description>In this article, we theoretically propose and experimentally demonstrate a compact, optically transparent metasurface radome with asymmetric electromagnetic absorption for making low-radar cross section (RCS) and gain-enhanced multifunctional antennas. The proposed unseeable metasurface has a bilayer structure consisting of periodically patterned and unpatterned transparent conductive films separated by a thin acrylic layer. Such a bilayer metasurface is highly reflective when illuminated by microwave from one side, while exhibit a high absorption when illuminated from the other side. Moreover, when the optically transparent, weather-proofing bilayer metasurface acts as a radome, it can greatly enhance the gain and reduce RCS of the solar panel-integrated microstrip antenna without affecting the performance of optical devices (e.g., photovoltaic panels, flat panel displays, or light emitting devices). We provide the analytical formulation and design guidelines for the bilayer metasurface and the integrated cavity antenna. Our experimental results show that the realized gain of the microstrip antenna can be increased by 6.1 dBi and its RCS can be reduced by more than 20 dB around the operating frequency of 8.1 GHz. The proposed low-profile, flexible, hydrophobic, and optically transparent bilayer metasurface may be beneficial for many applications, including the next-generation radomes, self-powered 5G/6G base stations, satellite communication (CubSat), and other compact, multifunctional RF and microwave modulus integrated with optical sensors, lidar, displays, and solar panels.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2022.3215247</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antenna radiation patterns ; Antennas ; Directive antennas ; Electromagnetic absorption ; Fabry-Perrot cavity (FPC) antennas ; Flat panel displays ; Metasurfaces ; Microstrip antennas ; Optical films ; Optical measuring instruments ; Optical reflection ; radar cross section (RCS) reduction ; Radar cross sections ; Radomes ; Satellite communications ; Solar panels ; Thin films ; transparent antennas ; Weatherproofing</subject><ispartof>IEEE transactions on antennas and propagation, 2023-01, Vol.71 (1), p.67-77</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-e6eb1dae7b5dd8808b3a28617efa81014fd960dd11ef57794786fb593cc3de053</citedby><cites>FETCH-LOGICAL-c291t-e6eb1dae7b5dd8808b3a28617efa81014fd960dd11ef57794786fb593cc3de053</cites><orcidid>0000-0002-8112-8457 ; 0000-0001-7678-0312 ; 0000-0002-3731-1246 ; 0000-0002-6868-0220</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9928064$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9928064$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ha, Trung D.</creatorcontrib><creatorcontrib>Zhu, Liang</creatorcontrib><creatorcontrib>Alsaab, Nabeel</creatorcontrib><creatorcontrib>Chen, Pai-Yen</creatorcontrib><creatorcontrib>Guo, Jay L.</creatorcontrib><title>Optically Transparent Metasurface Radome for RCS Reduction and Gain Enhancement of Multifunctional Antennas</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>In this article, we theoretically propose and experimentally demonstrate a compact, optically transparent metasurface radome with asymmetric electromagnetic absorption for making low-radar cross section (RCS) and gain-enhanced multifunctional antennas. The proposed unseeable metasurface has a bilayer structure consisting of periodically patterned and unpatterned transparent conductive films separated by a thin acrylic layer. Such a bilayer metasurface is highly reflective when illuminated by microwave from one side, while exhibit a high absorption when illuminated from the other side. Moreover, when the optically transparent, weather-proofing bilayer metasurface acts as a radome, it can greatly enhance the gain and reduce RCS of the solar panel-integrated microstrip antenna without affecting the performance of optical devices (e.g., photovoltaic panels, flat panel displays, or light emitting devices). We provide the analytical formulation and design guidelines for the bilayer metasurface and the integrated cavity antenna. Our experimental results show that the realized gain of the microstrip antenna can be increased by 6.1 dBi and its RCS can be reduced by more than 20 dB around the operating frequency of 8.1 GHz. The proposed low-profile, flexible, hydrophobic, and optically transparent bilayer metasurface may be beneficial for many applications, including the next-generation radomes, self-powered 5G/6G base stations, satellite communication (CubSat), and other compact, multifunctional RF and microwave modulus integrated with optical sensors, lidar, displays, and solar panels.</description><subject>Antenna radiation patterns</subject><subject>Antennas</subject><subject>Directive antennas</subject><subject>Electromagnetic absorption</subject><subject>Fabry-Perrot cavity (FPC) antennas</subject><subject>Flat panel displays</subject><subject>Metasurfaces</subject><subject>Microstrip antennas</subject><subject>Optical films</subject><subject>Optical measuring instruments</subject><subject>Optical reflection</subject><subject>radar cross section (RCS) reduction</subject><subject>Radar cross sections</subject><subject>Radomes</subject><subject>Satellite communications</subject><subject>Solar panels</subject><subject>Thin films</subject><subject>transparent antennas</subject><subject>Weatherproofing</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLwzAYhoMoOKd3wUvAc2eStml6HGNOYWMyJ3gLafIFO7u0Julh_97ODU8fHzzvy8uD0D0lE0pJ-bSdvk0YYWySMpqzrLhAI5rnImGM0Us0IoSKpGT88xrdhLAb3kxk2Qh9r7tYa9U0B7z1yoVOeXARryCq0HurNOCNMu0esG093sze8QZMr2PdOqycwQtVOzx3X8pp2B-TrcWrvom17d0fpRo8dRGcU-EWXVnVBLg73zH6eJ5vZy_Jcr14nU2XiWYljQlwqKhRUFS5MUIQUaWKCU4LsErQYbg1JSfGUAo2L4oyKwS3VV6mWqcGSJ6O0eOpt_PtTw8hyl3b-2FJkKzgnKdUZHSgyInSvg3Bg5Wdr_fKHyQl8qhUDkrlUak8Kx0iD6dIDQD_eFkyQXiW_gJspXNh</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Ha, Trung D.</creator><creator>Zhu, Liang</creator><creator>Alsaab, Nabeel</creator><creator>Chen, Pai-Yen</creator><creator>Guo, Jay L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8112-8457</orcidid><orcidid>https://orcid.org/0000-0001-7678-0312</orcidid><orcidid>https://orcid.org/0000-0002-3731-1246</orcidid><orcidid>https://orcid.org/0000-0002-6868-0220</orcidid></search><sort><creationdate>202301</creationdate><title>Optically Transparent Metasurface Radome for RCS Reduction and Gain Enhancement of Multifunctional Antennas</title><author>Ha, Trung D. ; Zhu, Liang ; Alsaab, Nabeel ; Chen, Pai-Yen ; Guo, Jay L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-e6eb1dae7b5dd8808b3a28617efa81014fd960dd11ef57794786fb593cc3de053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antenna radiation patterns</topic><topic>Antennas</topic><topic>Directive antennas</topic><topic>Electromagnetic absorption</topic><topic>Fabry-Perrot cavity (FPC) antennas</topic><topic>Flat panel displays</topic><topic>Metasurfaces</topic><topic>Microstrip antennas</topic><topic>Optical films</topic><topic>Optical measuring instruments</topic><topic>Optical reflection</topic><topic>radar cross section (RCS) reduction</topic><topic>Radar cross sections</topic><topic>Radomes</topic><topic>Satellite communications</topic><topic>Solar panels</topic><topic>Thin films</topic><topic>transparent antennas</topic><topic>Weatherproofing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ha, Trung D.</creatorcontrib><creatorcontrib>Zhu, Liang</creatorcontrib><creatorcontrib>Alsaab, Nabeel</creatorcontrib><creatorcontrib>Chen, Pai-Yen</creatorcontrib><creatorcontrib>Guo, Jay L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ha, Trung D.</au><au>Zhu, Liang</au><au>Alsaab, Nabeel</au><au>Chen, Pai-Yen</au><au>Guo, Jay L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optically Transparent Metasurface Radome for RCS Reduction and Gain Enhancement of Multifunctional Antennas</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2023-01</date><risdate>2023</risdate><volume>71</volume><issue>1</issue><spage>67</spage><epage>77</epage><pages>67-77</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>In this article, we theoretically propose and experimentally demonstrate a compact, optically transparent metasurface radome with asymmetric electromagnetic absorption for making low-radar cross section (RCS) and gain-enhanced multifunctional antennas. The proposed unseeable metasurface has a bilayer structure consisting of periodically patterned and unpatterned transparent conductive films separated by a thin acrylic layer. Such a bilayer metasurface is highly reflective when illuminated by microwave from one side, while exhibit a high absorption when illuminated from the other side. Moreover, when the optically transparent, weather-proofing bilayer metasurface acts as a radome, it can greatly enhance the gain and reduce RCS of the solar panel-integrated microstrip antenna without affecting the performance of optical devices (e.g., photovoltaic panels, flat panel displays, or light emitting devices). We provide the analytical formulation and design guidelines for the bilayer metasurface and the integrated cavity antenna. Our experimental results show that the realized gain of the microstrip antenna can be increased by 6.1 dBi and its RCS can be reduced by more than 20 dB around the operating frequency of 8.1 GHz. The proposed low-profile, flexible, hydrophobic, and optically transparent bilayer metasurface may be beneficial for many applications, including the next-generation radomes, self-powered 5G/6G base stations, satellite communication (CubSat), and other compact, multifunctional RF and microwave modulus integrated with optical sensors, lidar, displays, and solar panels.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2022.3215247</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8112-8457</orcidid><orcidid>https://orcid.org/0000-0001-7678-0312</orcidid><orcidid>https://orcid.org/0000-0002-3731-1246</orcidid><orcidid>https://orcid.org/0000-0002-6868-0220</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2023-01, Vol.71 (1), p.67-77
issn 0018-926X
1558-2221
language eng
recordid cdi_crossref_primary_10_1109_TAP_2022_3215247
source IEEE Electronic Library (IEL)
subjects Antenna radiation patterns
Antennas
Directive antennas
Electromagnetic absorption
Fabry-Perrot cavity (FPC) antennas
Flat panel displays
Metasurfaces
Microstrip antennas
Optical films
Optical measuring instruments
Optical reflection
radar cross section (RCS) reduction
Radar cross sections
Radomes
Satellite communications
Solar panels
Thin films
transparent antennas
Weatherproofing
title Optically Transparent Metasurface Radome for RCS Reduction and Gain Enhancement of Multifunctional Antennas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T10%3A21%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optically%20Transparent%20Metasurface%20Radome%20for%20RCS%20Reduction%20and%20Gain%20Enhancement%20of%20Multifunctional%20Antennas&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Ha,%20Trung%20D.&rft.date=2023-01&rft.volume=71&rft.issue=1&rft.spage=67&rft.epage=77&rft.pages=67-77&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2022.3215247&rft_dat=%3Cproquest_RIE%3E2766631841%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766631841&rft_id=info:pmid/&rft_ieee_id=9928064&rfr_iscdi=true