Conformal Parallel Plate Waveguide Polarizer Integrated in a Geodesic Lens Antenna

Here, we propose a low profile polarizing technique integrated in a parallel plate waveguide configuration, compatible with fully metallic geodesic lens antennas. The geodesic shape of the antenna is chosen to resemble the operation of a Luneburg lens. The lens is fed with 11 waveguide ports with 10...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2022, Vol.70 (11), p.1-1
Hauptverfasser: Vidarsson, Freysteinn V., Zetterstrom, Oskar, Algaba-Brazalez, Astrid, Fonseca, Nelson J. G., Johansson, Martin, Manholm, Lars, Quevedo-Teruel, Oscar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 11
container_start_page 1
container_title IEEE transactions on antennas and propagation
container_volume 70
creator Vidarsson, Freysteinn V.
Zetterstrom, Oskar
Algaba-Brazalez, Astrid
Fonseca, Nelson J. G.
Johansson, Martin
Manholm, Lars
Quevedo-Teruel, Oscar
description Here, we propose a low profile polarizing technique integrated in a parallel plate waveguide configuration, compatible with fully metallic geodesic lens antennas. The geodesic shape of the antenna is chosen to resemble the operation of a Luneburg lens. The lens is fed with 11 waveguide ports with 10° separation producing 11 switchable beams in an angular range of ±50°. Two metallic polarizing screens are loaded into the aperture of the antenna to rotate the electric field from vertical linear polarization, which is the polarization of the TEM (transverse electromagnetic) mode supported in the lens, to +45° linear polarization. Since the polarizing unit cells are integrated into the aperture of the antenna, the final design is compact. Additionally, the size of the polarizing unit cells is about 0.55λ at the central frequency of operation making the antenna suitable to produce an array formed of stacked lenses. A prototype of the antenna in the K a -band was manufactured and tested, verifying the performance obtained in simulations.
doi_str_mv 10.1109/TAP.2022.3209266
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAP_2022_3209266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9911197</ieee_id><sourcerecordid>2737573984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-a0396bdb5a947d0df986aedc6d17e8a62606385e5bd3a7b8afdc0cdec8f9729f3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKt7wU3A9dQ85pEsS9UqFCxSH7twZ3Knjo6Tmswo-utNqbi6j_Pdw-UQcsrZhHOmL1bT5UQwISZSMC3yfI-MeJapRAjB98mIMa6SuH8-JEchvMYxVWk6Ivcz19XOv0NLl-ChbTE2LfRIn-AT10NjkS5dC775QU9vux7XPqqWNh0FOkdnMTQVXWAX6DSqXQfH5KCGNuDJXx2Th-ur1ewmWdzNb2fTRVJJxvsEmNR5acsMdFpYZmutckBb5ZYXqCAXOculyjArrYSiVFDbilUWK1XrQuhajkmy8w1fuBlKs_HNO_hv46Axl83j1Di_Nm_9i5FCpqKI_PmO33j3MWDozasbfBdfNFEtskJqlUaK7ajKuxA81v--nJlt0iYmbbZJm7-k48nZ7qRBxH9ca865LuQv6HF6ew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737573984</pqid></control><display><type>article</type><title>Conformal Parallel Plate Waveguide Polarizer Integrated in a Geodesic Lens Antenna</title><source>IEEE Electronic Library (IEL)</source><source>SWEPUB Freely available online</source><creator>Vidarsson, Freysteinn V. ; Zetterstrom, Oskar ; Algaba-Brazalez, Astrid ; Fonseca, Nelson J. G. ; Johansson, Martin ; Manholm, Lars ; Quevedo-Teruel, Oscar</creator><creatorcontrib>Vidarsson, Freysteinn V. ; Zetterstrom, Oskar ; Algaba-Brazalez, Astrid ; Fonseca, Nelson J. G. ; Johansson, Martin ; Manholm, Lars ; Quevedo-Teruel, Oscar</creatorcontrib><description>Here, we propose a low profile polarizing technique integrated in a parallel plate waveguide configuration, compatible with fully metallic geodesic lens antennas. The geodesic shape of the antenna is chosen to resemble the operation of a Luneburg lens. The lens is fed with 11 waveguide ports with 10° separation producing 11 switchable beams in an angular range of ±50°. Two metallic polarizing screens are loaded into the aperture of the antenna to rotate the electric field from vertical linear polarization, which is the polarization of the TEM (transverse electromagnetic) mode supported in the lens, to +45° linear polarization. Since the polarizing unit cells are integrated into the aperture of the antenna, the final design is compact. Additionally, the size of the polarizing unit cells is about 0.55λ at the central frequency of operation making the antenna suitable to produce an array formed of stacked lenses. A prototype of the antenna in the K a -band was manufactured and tested, verifying the performance obtained in simulations.</description><identifier>ISSN: 0018-926X</identifier><identifier>ISSN: 1558-2221</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2022.3209266</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antenna arrays ; Antenna design ; Antenna feeds ; Antennas ; Apertures ; Beam scanning ; Electric fields ; fully metallic ; geodesic lens ; Lens antennas ; Lenses ; Linear polarization ; Luneburg lens antenna ; Optical waveguides ; Parallel plates ; Polarization ; Polarization transformation ; Polarizers ; Refractive index ; Surface waves ; Vertical polarization ; Waveguides</subject><ispartof>IEEE transactions on antennas and propagation, 2022, Vol.70 (11), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-a0396bdb5a947d0df986aedc6d17e8a62606385e5bd3a7b8afdc0cdec8f9729f3</citedby><cites>FETCH-LOGICAL-c301t-a0396bdb5a947d0df986aedc6d17e8a62606385e5bd3a7b8afdc0cdec8f9729f3</cites><orcidid>0000-0002-4900-4788 ; 0000-0002-2432-7708 ; 0000-0002-7971-8706 ; 0000-0002-1991-4334 ; 0000-0003-2193-5131 ; 0000-0002-5338-1789 ; 0000-0003-2004-4433</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9911197$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,776,780,792,881,4010,27900,27901,27902,54733</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-323427$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Vidarsson, Freysteinn V.</creatorcontrib><creatorcontrib>Zetterstrom, Oskar</creatorcontrib><creatorcontrib>Algaba-Brazalez, Astrid</creatorcontrib><creatorcontrib>Fonseca, Nelson J. G.</creatorcontrib><creatorcontrib>Johansson, Martin</creatorcontrib><creatorcontrib>Manholm, Lars</creatorcontrib><creatorcontrib>Quevedo-Teruel, Oscar</creatorcontrib><title>Conformal Parallel Plate Waveguide Polarizer Integrated in a Geodesic Lens Antenna</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>Here, we propose a low profile polarizing technique integrated in a parallel plate waveguide configuration, compatible with fully metallic geodesic lens antennas. The geodesic shape of the antenna is chosen to resemble the operation of a Luneburg lens. The lens is fed with 11 waveguide ports with 10° separation producing 11 switchable beams in an angular range of ±50°. Two metallic polarizing screens are loaded into the aperture of the antenna to rotate the electric field from vertical linear polarization, which is the polarization of the TEM (transverse electromagnetic) mode supported in the lens, to +45° linear polarization. Since the polarizing unit cells are integrated into the aperture of the antenna, the final design is compact. Additionally, the size of the polarizing unit cells is about 0.55λ at the central frequency of operation making the antenna suitable to produce an array formed of stacked lenses. A prototype of the antenna in the K a -band was manufactured and tested, verifying the performance obtained in simulations.</description><subject>Antenna arrays</subject><subject>Antenna design</subject><subject>Antenna feeds</subject><subject>Antennas</subject><subject>Apertures</subject><subject>Beam scanning</subject><subject>Electric fields</subject><subject>fully metallic</subject><subject>geodesic lens</subject><subject>Lens antennas</subject><subject>Lenses</subject><subject>Linear polarization</subject><subject>Luneburg lens antenna</subject><subject>Optical waveguides</subject><subject>Parallel plates</subject><subject>Polarization</subject><subject>Polarization transformation</subject><subject>Polarizers</subject><subject>Refractive index</subject><subject>Surface waves</subject><subject>Vertical polarization</subject><subject>Waveguides</subject><issn>0018-926X</issn><issn>1558-2221</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>D8T</sourceid><recordid>eNo9kEtLAzEUhYMoWKt7wU3A9dQ85pEsS9UqFCxSH7twZ3Knjo6Tmswo-utNqbi6j_Pdw-UQcsrZhHOmL1bT5UQwISZSMC3yfI-MeJapRAjB98mIMa6SuH8-JEchvMYxVWk6Ivcz19XOv0NLl-ChbTE2LfRIn-AT10NjkS5dC775QU9vux7XPqqWNh0FOkdnMTQVXWAX6DSqXQfH5KCGNuDJXx2Th-ur1ewmWdzNb2fTRVJJxvsEmNR5acsMdFpYZmutckBb5ZYXqCAXOculyjArrYSiVFDbilUWK1XrQuhajkmy8w1fuBlKs_HNO_hv46Axl83j1Di_Nm_9i5FCpqKI_PmO33j3MWDozasbfBdfNFEtskJqlUaK7ajKuxA81v--nJlt0iYmbbZJm7-k48nZ7qRBxH9ca865LuQv6HF6ew</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Vidarsson, Freysteinn V.</creator><creator>Zetterstrom, Oskar</creator><creator>Algaba-Brazalez, Astrid</creator><creator>Fonseca, Nelson J. G.</creator><creator>Johansson, Martin</creator><creator>Manholm, Lars</creator><creator>Quevedo-Teruel, Oscar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AFDQA</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8V</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-4900-4788</orcidid><orcidid>https://orcid.org/0000-0002-2432-7708</orcidid><orcidid>https://orcid.org/0000-0002-7971-8706</orcidid><orcidid>https://orcid.org/0000-0002-1991-4334</orcidid><orcidid>https://orcid.org/0000-0003-2193-5131</orcidid><orcidid>https://orcid.org/0000-0002-5338-1789</orcidid><orcidid>https://orcid.org/0000-0003-2004-4433</orcidid></search><sort><creationdate>2022</creationdate><title>Conformal Parallel Plate Waveguide Polarizer Integrated in a Geodesic Lens Antenna</title><author>Vidarsson, Freysteinn V. ; Zetterstrom, Oskar ; Algaba-Brazalez, Astrid ; Fonseca, Nelson J. G. ; Johansson, Martin ; Manholm, Lars ; Quevedo-Teruel, Oscar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-a0396bdb5a947d0df986aedc6d17e8a62606385e5bd3a7b8afdc0cdec8f9729f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antenna arrays</topic><topic>Antenna design</topic><topic>Antenna feeds</topic><topic>Antennas</topic><topic>Apertures</topic><topic>Beam scanning</topic><topic>Electric fields</topic><topic>fully metallic</topic><topic>geodesic lens</topic><topic>Lens antennas</topic><topic>Lenses</topic><topic>Linear polarization</topic><topic>Luneburg lens antenna</topic><topic>Optical waveguides</topic><topic>Parallel plates</topic><topic>Polarization</topic><topic>Polarization transformation</topic><topic>Polarizers</topic><topic>Refractive index</topic><topic>Surface waves</topic><topic>Vertical polarization</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vidarsson, Freysteinn V.</creatorcontrib><creatorcontrib>Zetterstrom, Oskar</creatorcontrib><creatorcontrib>Algaba-Brazalez, Astrid</creatorcontrib><creatorcontrib>Fonseca, Nelson J. G.</creatorcontrib><creatorcontrib>Johansson, Martin</creatorcontrib><creatorcontrib>Manholm, Lars</creatorcontrib><creatorcontrib>Quevedo-Teruel, Oscar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SWEPUB Kungliga Tekniska Högskolan full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SwePub Articles full text</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vidarsson, Freysteinn V.</au><au>Zetterstrom, Oskar</au><au>Algaba-Brazalez, Astrid</au><au>Fonseca, Nelson J. G.</au><au>Johansson, Martin</au><au>Manholm, Lars</au><au>Quevedo-Teruel, Oscar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conformal Parallel Plate Waveguide Polarizer Integrated in a Geodesic Lens Antenna</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2022</date><risdate>2022</risdate><volume>70</volume><issue>11</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-926X</issn><issn>1558-2221</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>Here, we propose a low profile polarizing technique integrated in a parallel plate waveguide configuration, compatible with fully metallic geodesic lens antennas. The geodesic shape of the antenna is chosen to resemble the operation of a Luneburg lens. The lens is fed with 11 waveguide ports with 10° separation producing 11 switchable beams in an angular range of ±50°. Two metallic polarizing screens are loaded into the aperture of the antenna to rotate the electric field from vertical linear polarization, which is the polarization of the TEM (transverse electromagnetic) mode supported in the lens, to +45° linear polarization. Since the polarizing unit cells are integrated into the aperture of the antenna, the final design is compact. Additionally, the size of the polarizing unit cells is about 0.55λ at the central frequency of operation making the antenna suitable to produce an array formed of stacked lenses. A prototype of the antenna in the K a -band was manufactured and tested, verifying the performance obtained in simulations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2022.3209266</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4900-4788</orcidid><orcidid>https://orcid.org/0000-0002-2432-7708</orcidid><orcidid>https://orcid.org/0000-0002-7971-8706</orcidid><orcidid>https://orcid.org/0000-0002-1991-4334</orcidid><orcidid>https://orcid.org/0000-0003-2193-5131</orcidid><orcidid>https://orcid.org/0000-0002-5338-1789</orcidid><orcidid>https://orcid.org/0000-0003-2004-4433</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2022, Vol.70 (11), p.1-1
issn 0018-926X
1558-2221
1558-2221
language eng
recordid cdi_crossref_primary_10_1109_TAP_2022_3209266
source IEEE Electronic Library (IEL); SWEPUB Freely available online
subjects Antenna arrays
Antenna design
Antenna feeds
Antennas
Apertures
Beam scanning
Electric fields
fully metallic
geodesic lens
Lens antennas
Lenses
Linear polarization
Luneburg lens antenna
Optical waveguides
Parallel plates
Polarization
Polarization transformation
Polarizers
Refractive index
Surface waves
Vertical polarization
Waveguides
title Conformal Parallel Plate Waveguide Polarizer Integrated in a Geodesic Lens Antenna
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A38%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conformal%20Parallel%20Plate%20Waveguide%20Polarizer%20Integrated%20in%20a%20Geodesic%20Lens%20Antenna&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Vidarsson,%20Freysteinn%20V.&rft.date=2022&rft.volume=70&rft.issue=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2022.3209266&rft_dat=%3Cproquest_cross%3E2737573984%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737573984&rft_id=info:pmid/&rft_ieee_id=9911197&rfr_iscdi=true