Conformal Parallel Plate Waveguide Polarizer Integrated in a Geodesic Lens Antenna
Here, we propose a low profile polarizing technique integrated in a parallel plate waveguide configuration, compatible with fully metallic geodesic lens antennas. The geodesic shape of the antenna is chosen to resemble the operation of a Luneburg lens. The lens is fed with 11 waveguide ports with 10...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2022, Vol.70 (11), p.1-1 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 11 |
container_start_page | 1 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 70 |
creator | Vidarsson, Freysteinn V. Zetterstrom, Oskar Algaba-Brazalez, Astrid Fonseca, Nelson J. G. Johansson, Martin Manholm, Lars Quevedo-Teruel, Oscar |
description | Here, we propose a low profile polarizing technique integrated in a parallel plate waveguide configuration, compatible with fully metallic geodesic lens antennas. The geodesic shape of the antenna is chosen to resemble the operation of a Luneburg lens. The lens is fed with 11 waveguide ports with 10° separation producing 11 switchable beams in an angular range of ±50°. Two metallic polarizing screens are loaded into the aperture of the antenna to rotate the electric field from vertical linear polarization, which is the polarization of the TEM (transverse electromagnetic) mode supported in the lens, to +45° linear polarization. Since the polarizing unit cells are integrated into the aperture of the antenna, the final design is compact. Additionally, the size of the polarizing unit cells is about 0.55λ at the central frequency of operation making the antenna suitable to produce an array formed of stacked lenses. A prototype of the antenna in the K a -band was manufactured and tested, verifying the performance obtained in simulations. |
doi_str_mv | 10.1109/TAP.2022.3209266 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAP_2022_3209266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9911197</ieee_id><sourcerecordid>2737573984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-a0396bdb5a947d0df986aedc6d17e8a62606385e5bd3a7b8afdc0cdec8f9729f3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKt7wU3A9dQ85pEsS9UqFCxSH7twZ3Knjo6Tmswo-utNqbi6j_Pdw-UQcsrZhHOmL1bT5UQwISZSMC3yfI-MeJapRAjB98mIMa6SuH8-JEchvMYxVWk6Ivcz19XOv0NLl-ChbTE2LfRIn-AT10NjkS5dC775QU9vux7XPqqWNh0FOkdnMTQVXWAX6DSqXQfH5KCGNuDJXx2Th-ur1ewmWdzNb2fTRVJJxvsEmNR5acsMdFpYZmutckBb5ZYXqCAXOculyjArrYSiVFDbilUWK1XrQuhajkmy8w1fuBlKs_HNO_hv46Axl83j1Di_Nm_9i5FCpqKI_PmO33j3MWDozasbfBdfNFEtskJqlUaK7ajKuxA81v--nJlt0iYmbbZJm7-k48nZ7qRBxH9ca865LuQv6HF6ew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737573984</pqid></control><display><type>article</type><title>Conformal Parallel Plate Waveguide Polarizer Integrated in a Geodesic Lens Antenna</title><source>IEEE Electronic Library (IEL)</source><source>SWEPUB Freely available online</source><creator>Vidarsson, Freysteinn V. ; Zetterstrom, Oskar ; Algaba-Brazalez, Astrid ; Fonseca, Nelson J. G. ; Johansson, Martin ; Manholm, Lars ; Quevedo-Teruel, Oscar</creator><creatorcontrib>Vidarsson, Freysteinn V. ; Zetterstrom, Oskar ; Algaba-Brazalez, Astrid ; Fonseca, Nelson J. G. ; Johansson, Martin ; Manholm, Lars ; Quevedo-Teruel, Oscar</creatorcontrib><description>Here, we propose a low profile polarizing technique integrated in a parallel plate waveguide configuration, compatible with fully metallic geodesic lens antennas. The geodesic shape of the antenna is chosen to resemble the operation of a Luneburg lens. The lens is fed with 11 waveguide ports with 10° separation producing 11 switchable beams in an angular range of ±50°. Two metallic polarizing screens are loaded into the aperture of the antenna to rotate the electric field from vertical linear polarization, which is the polarization of the TEM (transverse electromagnetic) mode supported in the lens, to +45° linear polarization. Since the polarizing unit cells are integrated into the aperture of the antenna, the final design is compact. Additionally, the size of the polarizing unit cells is about 0.55λ at the central frequency of operation making the antenna suitable to produce an array formed of stacked lenses. A prototype of the antenna in the K a -band was manufactured and tested, verifying the performance obtained in simulations.</description><identifier>ISSN: 0018-926X</identifier><identifier>ISSN: 1558-2221</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2022.3209266</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antenna arrays ; Antenna design ; Antenna feeds ; Antennas ; Apertures ; Beam scanning ; Electric fields ; fully metallic ; geodesic lens ; Lens antennas ; Lenses ; Linear polarization ; Luneburg lens antenna ; Optical waveguides ; Parallel plates ; Polarization ; Polarization transformation ; Polarizers ; Refractive index ; Surface waves ; Vertical polarization ; Waveguides</subject><ispartof>IEEE transactions on antennas and propagation, 2022, Vol.70 (11), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-a0396bdb5a947d0df986aedc6d17e8a62606385e5bd3a7b8afdc0cdec8f9729f3</citedby><cites>FETCH-LOGICAL-c301t-a0396bdb5a947d0df986aedc6d17e8a62606385e5bd3a7b8afdc0cdec8f9729f3</cites><orcidid>0000-0002-4900-4788 ; 0000-0002-2432-7708 ; 0000-0002-7971-8706 ; 0000-0002-1991-4334 ; 0000-0003-2193-5131 ; 0000-0002-5338-1789 ; 0000-0003-2004-4433</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9911197$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,776,780,792,881,4010,27900,27901,27902,54733</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-323427$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Vidarsson, Freysteinn V.</creatorcontrib><creatorcontrib>Zetterstrom, Oskar</creatorcontrib><creatorcontrib>Algaba-Brazalez, Astrid</creatorcontrib><creatorcontrib>Fonseca, Nelson J. G.</creatorcontrib><creatorcontrib>Johansson, Martin</creatorcontrib><creatorcontrib>Manholm, Lars</creatorcontrib><creatorcontrib>Quevedo-Teruel, Oscar</creatorcontrib><title>Conformal Parallel Plate Waveguide Polarizer Integrated in a Geodesic Lens Antenna</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>Here, we propose a low profile polarizing technique integrated in a parallel plate waveguide configuration, compatible with fully metallic geodesic lens antennas. The geodesic shape of the antenna is chosen to resemble the operation of a Luneburg lens. The lens is fed with 11 waveguide ports with 10° separation producing 11 switchable beams in an angular range of ±50°. Two metallic polarizing screens are loaded into the aperture of the antenna to rotate the electric field from vertical linear polarization, which is the polarization of the TEM (transverse electromagnetic) mode supported in the lens, to +45° linear polarization. Since the polarizing unit cells are integrated into the aperture of the antenna, the final design is compact. Additionally, the size of the polarizing unit cells is about 0.55λ at the central frequency of operation making the antenna suitable to produce an array formed of stacked lenses. A prototype of the antenna in the K a -band was manufactured and tested, verifying the performance obtained in simulations.</description><subject>Antenna arrays</subject><subject>Antenna design</subject><subject>Antenna feeds</subject><subject>Antennas</subject><subject>Apertures</subject><subject>Beam scanning</subject><subject>Electric fields</subject><subject>fully metallic</subject><subject>geodesic lens</subject><subject>Lens antennas</subject><subject>Lenses</subject><subject>Linear polarization</subject><subject>Luneburg lens antenna</subject><subject>Optical waveguides</subject><subject>Parallel plates</subject><subject>Polarization</subject><subject>Polarization transformation</subject><subject>Polarizers</subject><subject>Refractive index</subject><subject>Surface waves</subject><subject>Vertical polarization</subject><subject>Waveguides</subject><issn>0018-926X</issn><issn>1558-2221</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>D8T</sourceid><recordid>eNo9kEtLAzEUhYMoWKt7wU3A9dQ85pEsS9UqFCxSH7twZ3Knjo6Tmswo-utNqbi6j_Pdw-UQcsrZhHOmL1bT5UQwISZSMC3yfI-MeJapRAjB98mIMa6SuH8-JEchvMYxVWk6Ivcz19XOv0NLl-ChbTE2LfRIn-AT10NjkS5dC775QU9vux7XPqqWNh0FOkdnMTQVXWAX6DSqXQfH5KCGNuDJXx2Th-ur1ewmWdzNb2fTRVJJxvsEmNR5acsMdFpYZmutckBb5ZYXqCAXOculyjArrYSiVFDbilUWK1XrQuhajkmy8w1fuBlKs_HNO_hv46Axl83j1Di_Nm_9i5FCpqKI_PmO33j3MWDozasbfBdfNFEtskJqlUaK7ajKuxA81v--nJlt0iYmbbZJm7-k48nZ7qRBxH9ca865LuQv6HF6ew</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Vidarsson, Freysteinn V.</creator><creator>Zetterstrom, Oskar</creator><creator>Algaba-Brazalez, Astrid</creator><creator>Fonseca, Nelson J. G.</creator><creator>Johansson, Martin</creator><creator>Manholm, Lars</creator><creator>Quevedo-Teruel, Oscar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AFDQA</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8V</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-4900-4788</orcidid><orcidid>https://orcid.org/0000-0002-2432-7708</orcidid><orcidid>https://orcid.org/0000-0002-7971-8706</orcidid><orcidid>https://orcid.org/0000-0002-1991-4334</orcidid><orcidid>https://orcid.org/0000-0003-2193-5131</orcidid><orcidid>https://orcid.org/0000-0002-5338-1789</orcidid><orcidid>https://orcid.org/0000-0003-2004-4433</orcidid></search><sort><creationdate>2022</creationdate><title>Conformal Parallel Plate Waveguide Polarizer Integrated in a Geodesic Lens Antenna</title><author>Vidarsson, Freysteinn V. ; Zetterstrom, Oskar ; Algaba-Brazalez, Astrid ; Fonseca, Nelson J. G. ; Johansson, Martin ; Manholm, Lars ; Quevedo-Teruel, Oscar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-a0396bdb5a947d0df986aedc6d17e8a62606385e5bd3a7b8afdc0cdec8f9729f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antenna arrays</topic><topic>Antenna design</topic><topic>Antenna feeds</topic><topic>Antennas</topic><topic>Apertures</topic><topic>Beam scanning</topic><topic>Electric fields</topic><topic>fully metallic</topic><topic>geodesic lens</topic><topic>Lens antennas</topic><topic>Lenses</topic><topic>Linear polarization</topic><topic>Luneburg lens antenna</topic><topic>Optical waveguides</topic><topic>Parallel plates</topic><topic>Polarization</topic><topic>Polarization transformation</topic><topic>Polarizers</topic><topic>Refractive index</topic><topic>Surface waves</topic><topic>Vertical polarization</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vidarsson, Freysteinn V.</creatorcontrib><creatorcontrib>Zetterstrom, Oskar</creatorcontrib><creatorcontrib>Algaba-Brazalez, Astrid</creatorcontrib><creatorcontrib>Fonseca, Nelson J. G.</creatorcontrib><creatorcontrib>Johansson, Martin</creatorcontrib><creatorcontrib>Manholm, Lars</creatorcontrib><creatorcontrib>Quevedo-Teruel, Oscar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SWEPUB Kungliga Tekniska Högskolan full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SwePub Articles full text</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vidarsson, Freysteinn V.</au><au>Zetterstrom, Oskar</au><au>Algaba-Brazalez, Astrid</au><au>Fonseca, Nelson J. G.</au><au>Johansson, Martin</au><au>Manholm, Lars</au><au>Quevedo-Teruel, Oscar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conformal Parallel Plate Waveguide Polarizer Integrated in a Geodesic Lens Antenna</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2022</date><risdate>2022</risdate><volume>70</volume><issue>11</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-926X</issn><issn>1558-2221</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>Here, we propose a low profile polarizing technique integrated in a parallel plate waveguide configuration, compatible with fully metallic geodesic lens antennas. The geodesic shape of the antenna is chosen to resemble the operation of a Luneburg lens. The lens is fed with 11 waveguide ports with 10° separation producing 11 switchable beams in an angular range of ±50°. Two metallic polarizing screens are loaded into the aperture of the antenna to rotate the electric field from vertical linear polarization, which is the polarization of the TEM (transverse electromagnetic) mode supported in the lens, to +45° linear polarization. Since the polarizing unit cells are integrated into the aperture of the antenna, the final design is compact. Additionally, the size of the polarizing unit cells is about 0.55λ at the central frequency of operation making the antenna suitable to produce an array formed of stacked lenses. A prototype of the antenna in the K a -band was manufactured and tested, verifying the performance obtained in simulations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2022.3209266</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4900-4788</orcidid><orcidid>https://orcid.org/0000-0002-2432-7708</orcidid><orcidid>https://orcid.org/0000-0002-7971-8706</orcidid><orcidid>https://orcid.org/0000-0002-1991-4334</orcidid><orcidid>https://orcid.org/0000-0003-2193-5131</orcidid><orcidid>https://orcid.org/0000-0002-5338-1789</orcidid><orcidid>https://orcid.org/0000-0003-2004-4433</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2022, Vol.70 (11), p.1-1 |
issn | 0018-926X 1558-2221 1558-2221 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAP_2022_3209266 |
source | IEEE Electronic Library (IEL); SWEPUB Freely available online |
subjects | Antenna arrays Antenna design Antenna feeds Antennas Apertures Beam scanning Electric fields fully metallic geodesic lens Lens antennas Lenses Linear polarization Luneburg lens antenna Optical waveguides Parallel plates Polarization Polarization transformation Polarizers Refractive index Surface waves Vertical polarization Waveguides |
title | Conformal Parallel Plate Waveguide Polarizer Integrated in a Geodesic Lens Antenna |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A38%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conformal%20Parallel%20Plate%20Waveguide%20Polarizer%20Integrated%20in%20a%20Geodesic%20Lens%20Antenna&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Vidarsson,%20Freysteinn%20V.&rft.date=2022&rft.volume=70&rft.issue=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2022.3209266&rft_dat=%3Cproquest_cross%3E2737573984%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737573984&rft_id=info:pmid/&rft_ieee_id=9911197&rfr_iscdi=true |