EM DeepRay: An Expedient, Generalizable and Realistic Data-Driven Indoor Propagation Model
Efficient and realistic indoor radio propagation modelling tools are inextricably intertwined with the design and operation of next generation wireless networks. Machine learning (ML)-based radio propagation models can be trained with simulated or real-world data to provide accurate estimates of the...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2022-06, Vol.70 (6), p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 70 |
creator | Bakirtzis, Stefanos Chen, Jiming Qiu, Kehai Zhang, Jie Wassell, Ian |
description | Efficient and realistic indoor radio propagation modelling tools are inextricably intertwined with the design and operation of next generation wireless networks. Machine learning (ML)-based radio propagation models can be trained with simulated or real-world data to provide accurate estimates of the wireless channel characteristics in a computationally efficient way. However, most of the existing research on ML-based propagation models focuses on outdoor propagation modelling, while indoor data-driven propagation models remain site-specific with limited scalability. In this paper we present an efficient and credible ML-based radio propagation modelling framework for indoor environments. Specifically, we demonstrate how a convolutional encoder-decoder can be trained to replicate the results of a ray-tracer, by encoding physics-based information of an indoor environment, such as the permittivity of the walls, and decode it as the path-loss (PL) heatmap for an environment of interest. Our model is trained over multiple indoor geometries and frequency bands, and it can eventually predict the PL for unknown indoor geometries and frequency bands within a few milliseconds. Additionally, we illustrate how the concept of transfer learning can be leveraged to calibrate our model by adjusting its pre-estimate weights, allowing it to make predictions that are consistent with measurement data. |
doi_str_mv | 10.1109/TAP.2022.3172221 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAP_2022_3172221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9771088</ieee_id><sourcerecordid>2676780972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-107ecb0b82ff28578a936c9db6665eb8e3bedfd735de3439433e4bc0d43bd0063</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvAq1vzsZtkvRVba6HFUiqIl5BsZmVLTdbsVqy_3i0tnmZeeN4ZeBC6pmRAKcnvV8PFgBHGBpxKxhg9QT2aZSrZ76eoRwhVSc7E2zm6aJp1F1OVpj30Pp7jEUC9NLsHPPR4_FODq8C3d3gCHqLZVL_GbgAb7_ASuti0VYFHpjXJKFbf4PHUuxAiXsRQmw_TVsHjeXCwuURnpdk0cHWcffT6NF49Piezl8n0cThLCs55m1AiobDEKlaWTGVSmZyLIndWCJGBVcAtuNJJnjngKc9TziG1BXEpt44Qwfvo9nC3juFrC02r12EbffdSMyGFVCSXrKPIgSpiaJoIpa5j9WniTlOi9wZ1Z1DvDeqjwa5yc6hUAPCP51JSohT_A_vra6U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676780972</pqid></control><display><type>article</type><title>EM DeepRay: An Expedient, Generalizable and Realistic Data-Driven Indoor Propagation Model</title><source>IEEE Electronic Library (IEL)</source><creator>Bakirtzis, Stefanos ; Chen, Jiming ; Qiu, Kehai ; Zhang, Jie ; Wassell, Ian</creator><creatorcontrib>Bakirtzis, Stefanos ; Chen, Jiming ; Qiu, Kehai ; Zhang, Jie ; Wassell, Ian</creatorcontrib><description>Efficient and realistic indoor radio propagation modelling tools are inextricably intertwined with the design and operation of next generation wireless networks. Machine learning (ML)-based radio propagation models can be trained with simulated or real-world data to provide accurate estimates of the wireless channel characteristics in a computationally efficient way. However, most of the existing research on ML-based propagation models focuses on outdoor propagation modelling, while indoor data-driven propagation models remain site-specific with limited scalability. In this paper we present an efficient and credible ML-based radio propagation modelling framework for indoor environments. Specifically, we demonstrate how a convolutional encoder-decoder can be trained to replicate the results of a ray-tracer, by encoding physics-based information of an indoor environment, such as the permittivity of the walls, and decode it as the path-loss (PL) heatmap for an environment of interest. Our model is trained over multiple indoor geometries and frequency bands, and it can eventually predict the PL for unknown indoor geometries and frequency bands within a few milliseconds. Additionally, we illustrate how the concept of transfer learning can be leveraged to calibrate our model by adjusting its pre-estimate weights, allowing it to make predictions that are consistent with measurement data.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2022.3172221</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Coders ; Computational modeling ; Data models ; Decoding ; deep learning ; Environment models ; Frequencies ; Geometry ; Indoor environment ; Indoor environments ; indoor radio communication ; Machine Learning ; Mathematical models ; Predictive models ; Propagation ; radio propagation ; Radio transmission ; Ray tracing ; Wireless networks</subject><ispartof>IEEE transactions on antennas and propagation, 2022-06, Vol.70 (6), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-107ecb0b82ff28578a936c9db6665eb8e3bedfd735de3439433e4bc0d43bd0063</citedby><cites>FETCH-LOGICAL-c333t-107ecb0b82ff28578a936c9db6665eb8e3bedfd735de3439433e4bc0d43bd0063</cites><orcidid>0000-0002-3354-0690 ; 0000-0001-7927-5565 ; 0000-0002-7958-0495 ; 0000-0003-0355-284X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9771088$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9771088$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bakirtzis, Stefanos</creatorcontrib><creatorcontrib>Chen, Jiming</creatorcontrib><creatorcontrib>Qiu, Kehai</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Wassell, Ian</creatorcontrib><title>EM DeepRay: An Expedient, Generalizable and Realistic Data-Driven Indoor Propagation Model</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>Efficient and realistic indoor radio propagation modelling tools are inextricably intertwined with the design and operation of next generation wireless networks. Machine learning (ML)-based radio propagation models can be trained with simulated or real-world data to provide accurate estimates of the wireless channel characteristics in a computationally efficient way. However, most of the existing research on ML-based propagation models focuses on outdoor propagation modelling, while indoor data-driven propagation models remain site-specific with limited scalability. In this paper we present an efficient and credible ML-based radio propagation modelling framework for indoor environments. Specifically, we demonstrate how a convolutional encoder-decoder can be trained to replicate the results of a ray-tracer, by encoding physics-based information of an indoor environment, such as the permittivity of the walls, and decode it as the path-loss (PL) heatmap for an environment of interest. Our model is trained over multiple indoor geometries and frequency bands, and it can eventually predict the PL for unknown indoor geometries and frequency bands within a few milliseconds. Additionally, we illustrate how the concept of transfer learning can be leveraged to calibrate our model by adjusting its pre-estimate weights, allowing it to make predictions that are consistent with measurement data.</description><subject>Coders</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Decoding</subject><subject>deep learning</subject><subject>Environment models</subject><subject>Frequencies</subject><subject>Geometry</subject><subject>Indoor environment</subject><subject>Indoor environments</subject><subject>indoor radio communication</subject><subject>Machine Learning</subject><subject>Mathematical models</subject><subject>Predictive models</subject><subject>Propagation</subject><subject>radio propagation</subject><subject>Radio transmission</subject><subject>Ray tracing</subject><subject>Wireless networks</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvAq1vzsZtkvRVba6HFUiqIl5BsZmVLTdbsVqy_3i0tnmZeeN4ZeBC6pmRAKcnvV8PFgBHGBpxKxhg9QT2aZSrZ76eoRwhVSc7E2zm6aJp1F1OVpj30Pp7jEUC9NLsHPPR4_FODq8C3d3gCHqLZVL_GbgAb7_ASuti0VYFHpjXJKFbf4PHUuxAiXsRQmw_TVsHjeXCwuURnpdk0cHWcffT6NF49Piezl8n0cThLCs55m1AiobDEKlaWTGVSmZyLIndWCJGBVcAtuNJJnjngKc9TziG1BXEpt44Qwfvo9nC3juFrC02r12EbffdSMyGFVCSXrKPIgSpiaJoIpa5j9WniTlOi9wZ1Z1DvDeqjwa5yc6hUAPCP51JSohT_A_vra6U</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Bakirtzis, Stefanos</creator><creator>Chen, Jiming</creator><creator>Qiu, Kehai</creator><creator>Zhang, Jie</creator><creator>Wassell, Ian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3354-0690</orcidid><orcidid>https://orcid.org/0000-0001-7927-5565</orcidid><orcidid>https://orcid.org/0000-0002-7958-0495</orcidid><orcidid>https://orcid.org/0000-0003-0355-284X</orcidid></search><sort><creationdate>20220601</creationdate><title>EM DeepRay: An Expedient, Generalizable and Realistic Data-Driven Indoor Propagation Model</title><author>Bakirtzis, Stefanos ; Chen, Jiming ; Qiu, Kehai ; Zhang, Jie ; Wassell, Ian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-107ecb0b82ff28578a936c9db6665eb8e3bedfd735de3439433e4bc0d43bd0063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coders</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Decoding</topic><topic>deep learning</topic><topic>Environment models</topic><topic>Frequencies</topic><topic>Geometry</topic><topic>Indoor environment</topic><topic>Indoor environments</topic><topic>indoor radio communication</topic><topic>Machine Learning</topic><topic>Mathematical models</topic><topic>Predictive models</topic><topic>Propagation</topic><topic>radio propagation</topic><topic>Radio transmission</topic><topic>Ray tracing</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bakirtzis, Stefanos</creatorcontrib><creatorcontrib>Chen, Jiming</creatorcontrib><creatorcontrib>Qiu, Kehai</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Wassell, Ian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bakirtzis, Stefanos</au><au>Chen, Jiming</au><au>Qiu, Kehai</au><au>Zhang, Jie</au><au>Wassell, Ian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EM DeepRay: An Expedient, Generalizable and Realistic Data-Driven Indoor Propagation Model</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>70</volume><issue>6</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>Efficient and realistic indoor radio propagation modelling tools are inextricably intertwined with the design and operation of next generation wireless networks. Machine learning (ML)-based radio propagation models can be trained with simulated or real-world data to provide accurate estimates of the wireless channel characteristics in a computationally efficient way. However, most of the existing research on ML-based propagation models focuses on outdoor propagation modelling, while indoor data-driven propagation models remain site-specific with limited scalability. In this paper we present an efficient and credible ML-based radio propagation modelling framework for indoor environments. Specifically, we demonstrate how a convolutional encoder-decoder can be trained to replicate the results of a ray-tracer, by encoding physics-based information of an indoor environment, such as the permittivity of the walls, and decode it as the path-loss (PL) heatmap for an environment of interest. Our model is trained over multiple indoor geometries and frequency bands, and it can eventually predict the PL for unknown indoor geometries and frequency bands within a few milliseconds. Additionally, we illustrate how the concept of transfer learning can be leveraged to calibrate our model by adjusting its pre-estimate weights, allowing it to make predictions that are consistent with measurement data.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2022.3172221</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3354-0690</orcidid><orcidid>https://orcid.org/0000-0001-7927-5565</orcidid><orcidid>https://orcid.org/0000-0002-7958-0495</orcidid><orcidid>https://orcid.org/0000-0003-0355-284X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2022-06, Vol.70 (6), p.1-1 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAP_2022_3172221 |
source | IEEE Electronic Library (IEL) |
subjects | Coders Computational modeling Data models Decoding deep learning Environment models Frequencies Geometry Indoor environment Indoor environments indoor radio communication Machine Learning Mathematical models Predictive models Propagation radio propagation Radio transmission Ray tracing Wireless networks |
title | EM DeepRay: An Expedient, Generalizable and Realistic Data-Driven Indoor Propagation Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T00%3A22%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EM%20DeepRay:%20An%20Expedient,%20Generalizable%20and%20Realistic%20Data-Driven%20Indoor%20Propagation%20Model&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Bakirtzis,%20Stefanos&rft.date=2022-06-01&rft.volume=70&rft.issue=6&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2022.3172221&rft_dat=%3Cproquest_RIE%3E2676780972%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2676780972&rft_id=info:pmid/&rft_ieee_id=9771088&rfr_iscdi=true |