Application of Generative Adversarial Network-Based Inversion Algorithm in Imaging 2-D Lossy Biaxial Anisotropic Scatterer
An effective quasi-real-time inversion algorithm based on the super-resolution generative adversarial network (SR-GAN) is proposed to quantitatively image the 2-D biaxial anisotropic scatterers. The SR-GAN was originally proposed for the purpose of super-resolution image reconstruction, which exactl...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2022-09, Vol.70 (9), p.8262-8275 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8275 |
---|---|
container_issue | 9 |
container_start_page | 8262 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 70 |
creator | Ye, Xiuzhu Du, Naike Yang, Daohan Yuan, Xujin Song, Rencheng Sun, Sheng Fang, Daining |
description | An effective quasi-real-time inversion algorithm based on the super-resolution generative adversarial network (SR-GAN) is proposed to quantitatively image the 2-D biaxial anisotropic scatterers. The SR-GAN was originally proposed for the purpose of super-resolution image reconstruction, which exactly fits the need for inverse problem. In addition, Visual Geometry Group (VGG) loss is introduced to extract the high-level features of the object instead of the low-level pixel-wise error measures. The angle-dependent reconstruction effect due to the dipole radiation as in the traditional inversion methods is effectively resolved by the machine learning method. Numerical results using both synthetic data and experimental data are given to validate the effectiveness of the proposed method. Both the imaging quality and resolution are greatly improved by the proposed SR-GAN algorithm, compared to the traditional iterative inversion algorithm. In addition, the computational time is reduced significantly and the quasi-real-time imaging is finally realized, which promises a potential real-time application of the inverse scattering method. |
doi_str_mv | 10.1109/TAP.2022.3164198 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAP_2022_3164198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9751403</ieee_id><sourcerecordid>2723899990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-57d73e7d127d55b1dc8e3175d3c18bdce57d716562084b32c3100ecd329826c33</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvA89ZMsh_Z49aPWigqWMHbsk2mNbXdrMm2Wv96s7Q4l2GY95s3PEIugQ0AWH4zLV4GnHE-EJDGkMsj0oMkkRHnHI5JjzGQUc7T91Ny5v0yjLGM4x75LZpmZVTVGltTO6cjrNGFaYu00Ft0vnKmWtEnbL-t-4yGlUdNx3W36YhitbDOtB9ramo6XlcLUy8oj-7oxHq_o0NT_XR4URtvW2cbo-hrMGvRoTsnJ_Nq5fHi0Pvk7eF-evsYTZ5H49tiEimeQxslmc4EZhp4ppNkBlpJFJAlWiiQM62wE0CapJzJeCa4EsAYKi14LnmqhOiT6_3dxtmvDfq2XNqNq4NlyTMuZB6KBRXbq5QLrzucl40z68rtSmBll3AZEi67hMtDwgG52iMGEf_leZZAzIT4A6T5d7E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723899990</pqid></control><display><type>article</type><title>Application of Generative Adversarial Network-Based Inversion Algorithm in Imaging 2-D Lossy Biaxial Anisotropic Scatterer</title><source>IEEE Electronic Library (IEL)</source><creator>Ye, Xiuzhu ; Du, Naike ; Yang, Daohan ; Yuan, Xujin ; Song, Rencheng ; Sun, Sheng ; Fang, Daining</creator><creatorcontrib>Ye, Xiuzhu ; Du, Naike ; Yang, Daohan ; Yuan, Xujin ; Song, Rencheng ; Sun, Sheng ; Fang, Daining</creatorcontrib><description>An effective quasi-real-time inversion algorithm based on the super-resolution generative adversarial network (SR-GAN) is proposed to quantitatively image the 2-D biaxial anisotropic scatterers. The SR-GAN was originally proposed for the purpose of super-resolution image reconstruction, which exactly fits the need for inverse problem. In addition, Visual Geometry Group (VGG) loss is introduced to extract the high-level features of the object instead of the low-level pixel-wise error measures. The angle-dependent reconstruction effect due to the dipole radiation as in the traditional inversion methods is effectively resolved by the machine learning method. Numerical results using both synthetic data and experimental data are given to validate the effectiveness of the proposed method. Both the imaging quality and resolution are greatly improved by the proposed SR-GAN algorithm, compared to the traditional iterative inversion algorithm. In addition, the computational time is reduced significantly and the quasi-real-time imaging is finally realized, which promises a potential real-time application of the inverse scattering method.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2022.3164198</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Computing time ; Dipoles ; Error analysis ; Feature extraction ; Generative adversarial networks ; Image reconstruction ; Image resolution ; Imaging ; Inverse problems ; Inverse scattering ; Iterative methods ; Machine learning ; Manganese ; Permittivity ; Real time ; Real-time systems ; Superresolution</subject><ispartof>IEEE transactions on antennas and propagation, 2022-09, Vol.70 (9), p.8262-8275</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-57d73e7d127d55b1dc8e3175d3c18bdce57d716562084b32c3100ecd329826c33</citedby><cites>FETCH-LOGICAL-c291t-57d73e7d127d55b1dc8e3175d3c18bdce57d716562084b32c3100ecd329826c33</cites><orcidid>0000-0001-5361-9569 ; 0000-0003-1630-3180 ; 0000-0001-7760-7562 ; 0000-0003-2684-9662</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9751403$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9751403$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ye, Xiuzhu</creatorcontrib><creatorcontrib>Du, Naike</creatorcontrib><creatorcontrib>Yang, Daohan</creatorcontrib><creatorcontrib>Yuan, Xujin</creatorcontrib><creatorcontrib>Song, Rencheng</creatorcontrib><creatorcontrib>Sun, Sheng</creatorcontrib><creatorcontrib>Fang, Daining</creatorcontrib><title>Application of Generative Adversarial Network-Based Inversion Algorithm in Imaging 2-D Lossy Biaxial Anisotropic Scatterer</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>An effective quasi-real-time inversion algorithm based on the super-resolution generative adversarial network (SR-GAN) is proposed to quantitatively image the 2-D biaxial anisotropic scatterers. The SR-GAN was originally proposed for the purpose of super-resolution image reconstruction, which exactly fits the need for inverse problem. In addition, Visual Geometry Group (VGG) loss is introduced to extract the high-level features of the object instead of the low-level pixel-wise error measures. The angle-dependent reconstruction effect due to the dipole radiation as in the traditional inversion methods is effectively resolved by the machine learning method. Numerical results using both synthetic data and experimental data are given to validate the effectiveness of the proposed method. Both the imaging quality and resolution are greatly improved by the proposed SR-GAN algorithm, compared to the traditional iterative inversion algorithm. In addition, the computational time is reduced significantly and the quasi-real-time imaging is finally realized, which promises a potential real-time application of the inverse scattering method.</description><subject>Algorithms</subject><subject>Computing time</subject><subject>Dipoles</subject><subject>Error analysis</subject><subject>Feature extraction</subject><subject>Generative adversarial networks</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Imaging</subject><subject>Inverse problems</subject><subject>Inverse scattering</subject><subject>Iterative methods</subject><subject>Machine learning</subject><subject>Manganese</subject><subject>Permittivity</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Superresolution</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wUvA89ZMsh_Z49aPWigqWMHbsk2mNbXdrMm2Wv96s7Q4l2GY95s3PEIugQ0AWH4zLV4GnHE-EJDGkMsj0oMkkRHnHI5JjzGQUc7T91Ny5v0yjLGM4x75LZpmZVTVGltTO6cjrNGFaYu00Ft0vnKmWtEnbL-t-4yGlUdNx3W36YhitbDOtB9ramo6XlcLUy8oj-7oxHq_o0NT_XR4URtvW2cbo-hrMGvRoTsnJ_Nq5fHi0Pvk7eF-evsYTZ5H49tiEimeQxslmc4EZhp4ppNkBlpJFJAlWiiQM62wE0CapJzJeCa4EsAYKi14LnmqhOiT6_3dxtmvDfq2XNqNq4NlyTMuZB6KBRXbq5QLrzucl40z68rtSmBll3AZEi67hMtDwgG52iMGEf_leZZAzIT4A6T5d7E</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Ye, Xiuzhu</creator><creator>Du, Naike</creator><creator>Yang, Daohan</creator><creator>Yuan, Xujin</creator><creator>Song, Rencheng</creator><creator>Sun, Sheng</creator><creator>Fang, Daining</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5361-9569</orcidid><orcidid>https://orcid.org/0000-0003-1630-3180</orcidid><orcidid>https://orcid.org/0000-0001-7760-7562</orcidid><orcidid>https://orcid.org/0000-0003-2684-9662</orcidid></search><sort><creationdate>20220901</creationdate><title>Application of Generative Adversarial Network-Based Inversion Algorithm in Imaging 2-D Lossy Biaxial Anisotropic Scatterer</title><author>Ye, Xiuzhu ; Du, Naike ; Yang, Daohan ; Yuan, Xujin ; Song, Rencheng ; Sun, Sheng ; Fang, Daining</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-57d73e7d127d55b1dc8e3175d3c18bdce57d716562084b32c3100ecd329826c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Computing time</topic><topic>Dipoles</topic><topic>Error analysis</topic><topic>Feature extraction</topic><topic>Generative adversarial networks</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Imaging</topic><topic>Inverse problems</topic><topic>Inverse scattering</topic><topic>Iterative methods</topic><topic>Machine learning</topic><topic>Manganese</topic><topic>Permittivity</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Superresolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Xiuzhu</creatorcontrib><creatorcontrib>Du, Naike</creatorcontrib><creatorcontrib>Yang, Daohan</creatorcontrib><creatorcontrib>Yuan, Xujin</creatorcontrib><creatorcontrib>Song, Rencheng</creatorcontrib><creatorcontrib>Sun, Sheng</creatorcontrib><creatorcontrib>Fang, Daining</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ye, Xiuzhu</au><au>Du, Naike</au><au>Yang, Daohan</au><au>Yuan, Xujin</au><au>Song, Rencheng</au><au>Sun, Sheng</au><au>Fang, Daining</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Generative Adversarial Network-Based Inversion Algorithm in Imaging 2-D Lossy Biaxial Anisotropic Scatterer</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>70</volume><issue>9</issue><spage>8262</spage><epage>8275</epage><pages>8262-8275</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>An effective quasi-real-time inversion algorithm based on the super-resolution generative adversarial network (SR-GAN) is proposed to quantitatively image the 2-D biaxial anisotropic scatterers. The SR-GAN was originally proposed for the purpose of super-resolution image reconstruction, which exactly fits the need for inverse problem. In addition, Visual Geometry Group (VGG) loss is introduced to extract the high-level features of the object instead of the low-level pixel-wise error measures. The angle-dependent reconstruction effect due to the dipole radiation as in the traditional inversion methods is effectively resolved by the machine learning method. Numerical results using both synthetic data and experimental data are given to validate the effectiveness of the proposed method. Both the imaging quality and resolution are greatly improved by the proposed SR-GAN algorithm, compared to the traditional iterative inversion algorithm. In addition, the computational time is reduced significantly and the quasi-real-time imaging is finally realized, which promises a potential real-time application of the inverse scattering method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2022.3164198</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5361-9569</orcidid><orcidid>https://orcid.org/0000-0003-1630-3180</orcidid><orcidid>https://orcid.org/0000-0001-7760-7562</orcidid><orcidid>https://orcid.org/0000-0003-2684-9662</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2022-09, Vol.70 (9), p.8262-8275 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAP_2022_3164198 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Computing time Dipoles Error analysis Feature extraction Generative adversarial networks Image reconstruction Image resolution Imaging Inverse problems Inverse scattering Iterative methods Machine learning Manganese Permittivity Real time Real-time systems Superresolution |
title | Application of Generative Adversarial Network-Based Inversion Algorithm in Imaging 2-D Lossy Biaxial Anisotropic Scatterer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A51%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Generative%20Adversarial%20Network-Based%20Inversion%20Algorithm%20in%20Imaging%202-D%20Lossy%20Biaxial%20Anisotropic%20Scatterer&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Ye,%20Xiuzhu&rft.date=2022-09-01&rft.volume=70&rft.issue=9&rft.spage=8262&rft.epage=8275&rft.pages=8262-8275&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2022.3164198&rft_dat=%3Cproquest_RIE%3E2723899990%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723899990&rft_id=info:pmid/&rft_ieee_id=9751403&rfr_iscdi=true |