Application of Generative Adversarial Network-Based Inversion Algorithm in Imaging 2-D Lossy Biaxial Anisotropic Scatterer

An effective quasi-real-time inversion algorithm based on the super-resolution generative adversarial network (SR-GAN) is proposed to quantitatively image the 2-D biaxial anisotropic scatterers. The SR-GAN was originally proposed for the purpose of super-resolution image reconstruction, which exactl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2022-09, Vol.70 (9), p.8262-8275
Hauptverfasser: Ye, Xiuzhu, Du, Naike, Yang, Daohan, Yuan, Xujin, Song, Rencheng, Sun, Sheng, Fang, Daining
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8275
container_issue 9
container_start_page 8262
container_title IEEE transactions on antennas and propagation
container_volume 70
creator Ye, Xiuzhu
Du, Naike
Yang, Daohan
Yuan, Xujin
Song, Rencheng
Sun, Sheng
Fang, Daining
description An effective quasi-real-time inversion algorithm based on the super-resolution generative adversarial network (SR-GAN) is proposed to quantitatively image the 2-D biaxial anisotropic scatterers. The SR-GAN was originally proposed for the purpose of super-resolution image reconstruction, which exactly fits the need for inverse problem. In addition, Visual Geometry Group (VGG) loss is introduced to extract the high-level features of the object instead of the low-level pixel-wise error measures. The angle-dependent reconstruction effect due to the dipole radiation as in the traditional inversion methods is effectively resolved by the machine learning method. Numerical results using both synthetic data and experimental data are given to validate the effectiveness of the proposed method. Both the imaging quality and resolution are greatly improved by the proposed SR-GAN algorithm, compared to the traditional iterative inversion algorithm. In addition, the computational time is reduced significantly and the quasi-real-time imaging is finally realized, which promises a potential real-time application of the inverse scattering method.
doi_str_mv 10.1109/TAP.2022.3164198
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAP_2022_3164198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9751403</ieee_id><sourcerecordid>2723899990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-57d73e7d127d55b1dc8e3175d3c18bdce57d716562084b32c3100ecd329826c33</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvA89ZMsh_Z49aPWigqWMHbsk2mNbXdrMm2Wv96s7Q4l2GY95s3PEIugQ0AWH4zLV4GnHE-EJDGkMsj0oMkkRHnHI5JjzGQUc7T91Ny5v0yjLGM4x75LZpmZVTVGltTO6cjrNGFaYu00Ft0vnKmWtEnbL-t-4yGlUdNx3W36YhitbDOtB9ramo6XlcLUy8oj-7oxHq_o0NT_XR4URtvW2cbo-hrMGvRoTsnJ_Nq5fHi0Pvk7eF-evsYTZ5H49tiEimeQxslmc4EZhp4ppNkBlpJFJAlWiiQM62wE0CapJzJeCa4EsAYKi14LnmqhOiT6_3dxtmvDfq2XNqNq4NlyTMuZB6KBRXbq5QLrzucl40z68rtSmBll3AZEi67hMtDwgG52iMGEf_leZZAzIT4A6T5d7E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723899990</pqid></control><display><type>article</type><title>Application of Generative Adversarial Network-Based Inversion Algorithm in Imaging 2-D Lossy Biaxial Anisotropic Scatterer</title><source>IEEE Electronic Library (IEL)</source><creator>Ye, Xiuzhu ; Du, Naike ; Yang, Daohan ; Yuan, Xujin ; Song, Rencheng ; Sun, Sheng ; Fang, Daining</creator><creatorcontrib>Ye, Xiuzhu ; Du, Naike ; Yang, Daohan ; Yuan, Xujin ; Song, Rencheng ; Sun, Sheng ; Fang, Daining</creatorcontrib><description>An effective quasi-real-time inversion algorithm based on the super-resolution generative adversarial network (SR-GAN) is proposed to quantitatively image the 2-D biaxial anisotropic scatterers. The SR-GAN was originally proposed for the purpose of super-resolution image reconstruction, which exactly fits the need for inverse problem. In addition, Visual Geometry Group (VGG) loss is introduced to extract the high-level features of the object instead of the low-level pixel-wise error measures. The angle-dependent reconstruction effect due to the dipole radiation as in the traditional inversion methods is effectively resolved by the machine learning method. Numerical results using both synthetic data and experimental data are given to validate the effectiveness of the proposed method. Both the imaging quality and resolution are greatly improved by the proposed SR-GAN algorithm, compared to the traditional iterative inversion algorithm. In addition, the computational time is reduced significantly and the quasi-real-time imaging is finally realized, which promises a potential real-time application of the inverse scattering method.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2022.3164198</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Computing time ; Dipoles ; Error analysis ; Feature extraction ; Generative adversarial networks ; Image reconstruction ; Image resolution ; Imaging ; Inverse problems ; Inverse scattering ; Iterative methods ; Machine learning ; Manganese ; Permittivity ; Real time ; Real-time systems ; Superresolution</subject><ispartof>IEEE transactions on antennas and propagation, 2022-09, Vol.70 (9), p.8262-8275</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-57d73e7d127d55b1dc8e3175d3c18bdce57d716562084b32c3100ecd329826c33</citedby><cites>FETCH-LOGICAL-c291t-57d73e7d127d55b1dc8e3175d3c18bdce57d716562084b32c3100ecd329826c33</cites><orcidid>0000-0001-5361-9569 ; 0000-0003-1630-3180 ; 0000-0001-7760-7562 ; 0000-0003-2684-9662</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9751403$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9751403$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ye, Xiuzhu</creatorcontrib><creatorcontrib>Du, Naike</creatorcontrib><creatorcontrib>Yang, Daohan</creatorcontrib><creatorcontrib>Yuan, Xujin</creatorcontrib><creatorcontrib>Song, Rencheng</creatorcontrib><creatorcontrib>Sun, Sheng</creatorcontrib><creatorcontrib>Fang, Daining</creatorcontrib><title>Application of Generative Adversarial Network-Based Inversion Algorithm in Imaging 2-D Lossy Biaxial Anisotropic Scatterer</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>An effective quasi-real-time inversion algorithm based on the super-resolution generative adversarial network (SR-GAN) is proposed to quantitatively image the 2-D biaxial anisotropic scatterers. The SR-GAN was originally proposed for the purpose of super-resolution image reconstruction, which exactly fits the need for inverse problem. In addition, Visual Geometry Group (VGG) loss is introduced to extract the high-level features of the object instead of the low-level pixel-wise error measures. The angle-dependent reconstruction effect due to the dipole radiation as in the traditional inversion methods is effectively resolved by the machine learning method. Numerical results using both synthetic data and experimental data are given to validate the effectiveness of the proposed method. Both the imaging quality and resolution are greatly improved by the proposed SR-GAN algorithm, compared to the traditional iterative inversion algorithm. In addition, the computational time is reduced significantly and the quasi-real-time imaging is finally realized, which promises a potential real-time application of the inverse scattering method.</description><subject>Algorithms</subject><subject>Computing time</subject><subject>Dipoles</subject><subject>Error analysis</subject><subject>Feature extraction</subject><subject>Generative adversarial networks</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Imaging</subject><subject>Inverse problems</subject><subject>Inverse scattering</subject><subject>Iterative methods</subject><subject>Machine learning</subject><subject>Manganese</subject><subject>Permittivity</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Superresolution</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wUvA89ZMsh_Z49aPWigqWMHbsk2mNbXdrMm2Wv96s7Q4l2GY95s3PEIugQ0AWH4zLV4GnHE-EJDGkMsj0oMkkRHnHI5JjzGQUc7T91Ny5v0yjLGM4x75LZpmZVTVGltTO6cjrNGFaYu00Ft0vnKmWtEnbL-t-4yGlUdNx3W36YhitbDOtB9ramo6XlcLUy8oj-7oxHq_o0NT_XR4URtvW2cbo-hrMGvRoTsnJ_Nq5fHi0Pvk7eF-evsYTZ5H49tiEimeQxslmc4EZhp4ppNkBlpJFJAlWiiQM62wE0CapJzJeCa4EsAYKi14LnmqhOiT6_3dxtmvDfq2XNqNq4NlyTMuZB6KBRXbq5QLrzucl40z68rtSmBll3AZEi67hMtDwgG52iMGEf_leZZAzIT4A6T5d7E</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Ye, Xiuzhu</creator><creator>Du, Naike</creator><creator>Yang, Daohan</creator><creator>Yuan, Xujin</creator><creator>Song, Rencheng</creator><creator>Sun, Sheng</creator><creator>Fang, Daining</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5361-9569</orcidid><orcidid>https://orcid.org/0000-0003-1630-3180</orcidid><orcidid>https://orcid.org/0000-0001-7760-7562</orcidid><orcidid>https://orcid.org/0000-0003-2684-9662</orcidid></search><sort><creationdate>20220901</creationdate><title>Application of Generative Adversarial Network-Based Inversion Algorithm in Imaging 2-D Lossy Biaxial Anisotropic Scatterer</title><author>Ye, Xiuzhu ; Du, Naike ; Yang, Daohan ; Yuan, Xujin ; Song, Rencheng ; Sun, Sheng ; Fang, Daining</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-57d73e7d127d55b1dc8e3175d3c18bdce57d716562084b32c3100ecd329826c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Computing time</topic><topic>Dipoles</topic><topic>Error analysis</topic><topic>Feature extraction</topic><topic>Generative adversarial networks</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Imaging</topic><topic>Inverse problems</topic><topic>Inverse scattering</topic><topic>Iterative methods</topic><topic>Machine learning</topic><topic>Manganese</topic><topic>Permittivity</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Superresolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Xiuzhu</creatorcontrib><creatorcontrib>Du, Naike</creatorcontrib><creatorcontrib>Yang, Daohan</creatorcontrib><creatorcontrib>Yuan, Xujin</creatorcontrib><creatorcontrib>Song, Rencheng</creatorcontrib><creatorcontrib>Sun, Sheng</creatorcontrib><creatorcontrib>Fang, Daining</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ye, Xiuzhu</au><au>Du, Naike</au><au>Yang, Daohan</au><au>Yuan, Xujin</au><au>Song, Rencheng</au><au>Sun, Sheng</au><au>Fang, Daining</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Generative Adversarial Network-Based Inversion Algorithm in Imaging 2-D Lossy Biaxial Anisotropic Scatterer</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>70</volume><issue>9</issue><spage>8262</spage><epage>8275</epage><pages>8262-8275</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>An effective quasi-real-time inversion algorithm based on the super-resolution generative adversarial network (SR-GAN) is proposed to quantitatively image the 2-D biaxial anisotropic scatterers. The SR-GAN was originally proposed for the purpose of super-resolution image reconstruction, which exactly fits the need for inverse problem. In addition, Visual Geometry Group (VGG) loss is introduced to extract the high-level features of the object instead of the low-level pixel-wise error measures. The angle-dependent reconstruction effect due to the dipole radiation as in the traditional inversion methods is effectively resolved by the machine learning method. Numerical results using both synthetic data and experimental data are given to validate the effectiveness of the proposed method. Both the imaging quality and resolution are greatly improved by the proposed SR-GAN algorithm, compared to the traditional iterative inversion algorithm. In addition, the computational time is reduced significantly and the quasi-real-time imaging is finally realized, which promises a potential real-time application of the inverse scattering method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2022.3164198</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5361-9569</orcidid><orcidid>https://orcid.org/0000-0003-1630-3180</orcidid><orcidid>https://orcid.org/0000-0001-7760-7562</orcidid><orcidid>https://orcid.org/0000-0003-2684-9662</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2022-09, Vol.70 (9), p.8262-8275
issn 0018-926X
1558-2221
language eng
recordid cdi_crossref_primary_10_1109_TAP_2022_3164198
source IEEE Electronic Library (IEL)
subjects Algorithms
Computing time
Dipoles
Error analysis
Feature extraction
Generative adversarial networks
Image reconstruction
Image resolution
Imaging
Inverse problems
Inverse scattering
Iterative methods
Machine learning
Manganese
Permittivity
Real time
Real-time systems
Superresolution
title Application of Generative Adversarial Network-Based Inversion Algorithm in Imaging 2-D Lossy Biaxial Anisotropic Scatterer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A51%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Generative%20Adversarial%20Network-Based%20Inversion%20Algorithm%20in%20Imaging%202-D%20Lossy%20Biaxial%20Anisotropic%20Scatterer&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Ye,%20Xiuzhu&rft.date=2022-09-01&rft.volume=70&rft.issue=9&rft.spage=8262&rft.epage=8275&rft.pages=8262-8275&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2022.3164198&rft_dat=%3Cproquest_RIE%3E2723899990%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723899990&rft_id=info:pmid/&rft_ieee_id=9751403&rfr_iscdi=true