Zero Knowledge Focusing in Millimeter-Wave Imaging Systems Using Gradient Approximation

This communication addresses the focusing problem in the millimeter-wave imaging systems. We categorize the focusing problem into the frequency focusing for wideband systems and the range focusing for narrowband systems. In an out-of-focus wideband system, a shifted shadow of the object is present i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2022-04, Vol.70 (4), p.3123-3127
Hauptverfasser: Zamani, Hojatollah, Fakharzadeh, Mohammad, Amini, Arash, Marvasti, Farokh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3127
container_issue 4
container_start_page 3123
container_title IEEE transactions on antennas and propagation
container_volume 70
creator Zamani, Hojatollah
Fakharzadeh, Mohammad
Amini, Arash
Marvasti, Farokh
description This communication addresses the focusing problem in the millimeter-wave imaging systems. We categorize the focusing problem into the frequency focusing for wideband systems and the range focusing for narrowband systems. In an out-of-focus wideband system, a shifted shadow of the object is present in the reconstruction, whereas for a range out of the focused system, the recovered images are blurred. To overcome these issues, first, we theoretically show that the defocusing variations for both categories are bounded. Then, we present a universal formulation for focusing problem, which covers both wideband and narrowband systems. As the true focused images are sharp at the boundaries of the objects, our strategy for solving the problem is to maximize a defined sharpness metric. Moreover, we propose an autofocusing zero-knowledge algorithm, which concerns with maximizing the sharpness metric from an unknown object, while the exact gradient of the cost function is unknown. The proposed method is suitable for practical applications since it is simple, fast, and computationally efficient. The simulation results on synthetic and measured data are promising and support our claims that the proposed method increases the quality of the reconstruction.
doi_str_mv 10.1109/TAP.2021.3119100
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAP_2021_3119100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9576617</ieee_id><sourcerecordid>2647425752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-e725051ea8895a44a4551e15871652065899d3f8f4739d380d7906c1bc026d5f3</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wcuC562ZbD6PpdharCjYUvES4m62pOxHTbZq_3tTWzzNDPPevOGH0DXgAQBWd_Phy4BgAoMMQAHGJ6gHjMmUEAKnqIcxyFQR_naOLkJYx5FKSnto-W59mzw27Xdli5VNxm2-Da5ZJa5JnlxVudp21qdL82WTaW1W-9XrLnS2DsniTzjxpnC26ZLhZuPbH1ebzrXNJTorTRXs1bH20WJ8Px89pLPnyXQ0nKU5UdClVhCGGVgjpWKGUkNZnIBJAZwRzJlUqshKWVKRxUbiQijMc_jIMeEFK7M-uj3cjdmfWxs6vW63vomRmnAqKGGCkajCB1Xu2xC8LfXGx0f9TgPWe3w64tN7fPqIL1puDhZnrf2XKyY4B5H9AgSqajY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2647425752</pqid></control><display><type>article</type><title>Zero Knowledge Focusing in Millimeter-Wave Imaging Systems Using Gradient Approximation</title><source>IEEE Electronic Library (IEL)</source><creator>Zamani, Hojatollah ; Fakharzadeh, Mohammad ; Amini, Arash ; Marvasti, Farokh</creator><creatorcontrib>Zamani, Hojatollah ; Fakharzadeh, Mohammad ; Amini, Arash ; Marvasti, Farokh</creatorcontrib><description>This communication addresses the focusing problem in the millimeter-wave imaging systems. We categorize the focusing problem into the frequency focusing for wideband systems and the range focusing for narrowband systems. In an out-of-focus wideband system, a shifted shadow of the object is present in the reconstruction, whereas for a range out of the focused system, the recovered images are blurred. To overcome these issues, first, we theoretically show that the defocusing variations for both categories are bounded. Then, we present a universal formulation for focusing problem, which covers both wideband and narrowband systems. As the true focused images are sharp at the boundaries of the objects, our strategy for solving the problem is to maximize a defined sharpness metric. Moreover, we propose an autofocusing zero-knowledge algorithm, which concerns with maximizing the sharpness metric from an unknown object, while the exact gradient of the cost function is unknown. The proposed method is suitable for practical applications since it is simple, fast, and computationally efficient. The simulation results on synthetic and measured data are promising and support our claims that the proposed method increases the quality of the reconstruction.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2021.3119100</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Broadband ; Coherent points ; Cost function ; Defocusing ; Focusing ; gradient approximation ; Image reconstruction ; Imaging ; Mathematical models ; Measurement ; Millimeter waves ; millimeter-wave (MMW) imaging ; Narrowband ; range focusing ; Sharpness ; Transceivers ; Wideband ; wideband focusing</subject><ispartof>IEEE transactions on antennas and propagation, 2022-04, Vol.70 (4), p.3123-3127</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-e725051ea8895a44a4551e15871652065899d3f8f4739d380d7906c1bc026d5f3</citedby><cites>FETCH-LOGICAL-c291t-e725051ea8895a44a4551e15871652065899d3f8f4739d380d7906c1bc026d5f3</cites><orcidid>0000-0001-8300-280X ; 0000-0002-5508-6193 ; 0000-0002-7082-9581 ; 0000-0002-4635-8986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9576617$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9576617$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zamani, Hojatollah</creatorcontrib><creatorcontrib>Fakharzadeh, Mohammad</creatorcontrib><creatorcontrib>Amini, Arash</creatorcontrib><creatorcontrib>Marvasti, Farokh</creatorcontrib><title>Zero Knowledge Focusing in Millimeter-Wave Imaging Systems Using Gradient Approximation</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>This communication addresses the focusing problem in the millimeter-wave imaging systems. We categorize the focusing problem into the frequency focusing for wideband systems and the range focusing for narrowband systems. In an out-of-focus wideband system, a shifted shadow of the object is present in the reconstruction, whereas for a range out of the focused system, the recovered images are blurred. To overcome these issues, first, we theoretically show that the defocusing variations for both categories are bounded. Then, we present a universal formulation for focusing problem, which covers both wideband and narrowband systems. As the true focused images are sharp at the boundaries of the objects, our strategy for solving the problem is to maximize a defined sharpness metric. Moreover, we propose an autofocusing zero-knowledge algorithm, which concerns with maximizing the sharpness metric from an unknown object, while the exact gradient of the cost function is unknown. The proposed method is suitable for practical applications since it is simple, fast, and computationally efficient. The simulation results on synthetic and measured data are promising and support our claims that the proposed method increases the quality of the reconstruction.</description><subject>Algorithms</subject><subject>Broadband</subject><subject>Coherent points</subject><subject>Cost function</subject><subject>Defocusing</subject><subject>Focusing</subject><subject>gradient approximation</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>Mathematical models</subject><subject>Measurement</subject><subject>Millimeter waves</subject><subject>millimeter-wave (MMW) imaging</subject><subject>Narrowband</subject><subject>range focusing</subject><subject>Sharpness</subject><subject>Transceivers</subject><subject>Wideband</subject><subject>wideband focusing</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wcuC562ZbD6PpdharCjYUvES4m62pOxHTbZq_3tTWzzNDPPevOGH0DXgAQBWd_Phy4BgAoMMQAHGJ6gHjMmUEAKnqIcxyFQR_naOLkJYx5FKSnto-W59mzw27Xdli5VNxm2-Da5ZJa5JnlxVudp21qdL82WTaW1W-9XrLnS2DsniTzjxpnC26ZLhZuPbH1ebzrXNJTorTRXs1bH20WJ8Px89pLPnyXQ0nKU5UdClVhCGGVgjpWKGUkNZnIBJAZwRzJlUqshKWVKRxUbiQijMc_jIMeEFK7M-uj3cjdmfWxs6vW63vomRmnAqKGGCkajCB1Xu2xC8LfXGx0f9TgPWe3w64tN7fPqIL1puDhZnrf2XKyY4B5H9AgSqajY</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Zamani, Hojatollah</creator><creator>Fakharzadeh, Mohammad</creator><creator>Amini, Arash</creator><creator>Marvasti, Farokh</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8300-280X</orcidid><orcidid>https://orcid.org/0000-0002-5508-6193</orcidid><orcidid>https://orcid.org/0000-0002-7082-9581</orcidid><orcidid>https://orcid.org/0000-0002-4635-8986</orcidid></search><sort><creationdate>20220401</creationdate><title>Zero Knowledge Focusing in Millimeter-Wave Imaging Systems Using Gradient Approximation</title><author>Zamani, Hojatollah ; Fakharzadeh, Mohammad ; Amini, Arash ; Marvasti, Farokh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-e725051ea8895a44a4551e15871652065899d3f8f4739d380d7906c1bc026d5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Broadband</topic><topic>Coherent points</topic><topic>Cost function</topic><topic>Defocusing</topic><topic>Focusing</topic><topic>gradient approximation</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>Mathematical models</topic><topic>Measurement</topic><topic>Millimeter waves</topic><topic>millimeter-wave (MMW) imaging</topic><topic>Narrowband</topic><topic>range focusing</topic><topic>Sharpness</topic><topic>Transceivers</topic><topic>Wideband</topic><topic>wideband focusing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zamani, Hojatollah</creatorcontrib><creatorcontrib>Fakharzadeh, Mohammad</creatorcontrib><creatorcontrib>Amini, Arash</creatorcontrib><creatorcontrib>Marvasti, Farokh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zamani, Hojatollah</au><au>Fakharzadeh, Mohammad</au><au>Amini, Arash</au><au>Marvasti, Farokh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zero Knowledge Focusing in Millimeter-Wave Imaging Systems Using Gradient Approximation</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>70</volume><issue>4</issue><spage>3123</spage><epage>3127</epage><pages>3123-3127</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>This communication addresses the focusing problem in the millimeter-wave imaging systems. We categorize the focusing problem into the frequency focusing for wideband systems and the range focusing for narrowband systems. In an out-of-focus wideband system, a shifted shadow of the object is present in the reconstruction, whereas for a range out of the focused system, the recovered images are blurred. To overcome these issues, first, we theoretically show that the defocusing variations for both categories are bounded. Then, we present a universal formulation for focusing problem, which covers both wideband and narrowband systems. As the true focused images are sharp at the boundaries of the objects, our strategy for solving the problem is to maximize a defined sharpness metric. Moreover, we propose an autofocusing zero-knowledge algorithm, which concerns with maximizing the sharpness metric from an unknown object, while the exact gradient of the cost function is unknown. The proposed method is suitable for practical applications since it is simple, fast, and computationally efficient. The simulation results on synthetic and measured data are promising and support our claims that the proposed method increases the quality of the reconstruction.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2021.3119100</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-8300-280X</orcidid><orcidid>https://orcid.org/0000-0002-5508-6193</orcidid><orcidid>https://orcid.org/0000-0002-7082-9581</orcidid><orcidid>https://orcid.org/0000-0002-4635-8986</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2022-04, Vol.70 (4), p.3123-3127
issn 0018-926X
1558-2221
language eng
recordid cdi_crossref_primary_10_1109_TAP_2021_3119100
source IEEE Electronic Library (IEL)
subjects Algorithms
Broadband
Coherent points
Cost function
Defocusing
Focusing
gradient approximation
Image reconstruction
Imaging
Mathematical models
Measurement
Millimeter waves
millimeter-wave (MMW) imaging
Narrowband
range focusing
Sharpness
Transceivers
Wideband
wideband focusing
title Zero Knowledge Focusing in Millimeter-Wave Imaging Systems Using Gradient Approximation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T02%3A23%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zero%20Knowledge%20Focusing%20in%20Millimeter-Wave%20Imaging%20Systems%20Using%20Gradient%20Approximation&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Zamani,%20Hojatollah&rft.date=2022-04-01&rft.volume=70&rft.issue=4&rft.spage=3123&rft.epage=3127&rft.pages=3123-3127&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2021.3119100&rft_dat=%3Cproquest_RIE%3E2647425752%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2647425752&rft_id=info:pmid/&rft_ieee_id=9576617&rfr_iscdi=true