Generation of a High-Gain Bidirectional Transmit-Reflect-Array Antenna With Asymmetric Beams Using Sparse-Array Method

A high-gain transmit-reflect-array (TRA) antenna with asymmetric bidirectional beams using sparse-array method is presented in this communication. The proposed element consists of three-layer hexagonal-ring-patch (HRP) structure, able to achieve both amplitude (0 or 1) and phase modulation. Based on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2021-09, Vol.69 (9), p.6087-6092
Hauptverfasser: Liu, Shi Lin, Lin, Xian Qi, Yan, Yu Hen, Fan, Yu Lu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6092
container_issue 9
container_start_page 6087
container_title IEEE transactions on antennas and propagation
container_volume 69
creator Liu, Shi Lin
Lin, Xian Qi
Yan, Yu Hen
Fan, Yu Lu
description A high-gain transmit-reflect-array (TRA) antenna with asymmetric bidirectional beams using sparse-array method is presented in this communication. The proposed element consists of three-layer hexagonal-ring-patch (HRP) structure, able to achieve both amplitude (0 or 1) and phase modulation. Based on this kind of element structure, a 125 mm \times \,\, 125 mm square-shaped TRA is designed and fabricated. A 45.3% of the radiation units operate in transmission mode while others in reflection mode. Spatially fed by a conical horn antenna, two well-defined beams are obtained on both sides of the TRA, pointing to the direction of \theta = 0^{\circ } and 170° ( \varphi =0^{\circ } ), respectively. The measured results show a maximum gain of 21.4 dBi with a 1 dB gain bandwidth of 6.7% for the transmitted beam, and a maximum gain of 24.4 dBi with a 1 dB gain bandwidth of 9.3% for the reflected beam. To the authors' best knowledge, it is the first time that the sparse-array method is employed in spatially fed antenna design. The proposed method can conveniently manipulate the pointing directions and beampattern characteristics of the bidirectional beams, providing a promising candidate for bidirectional wireless communication applications.
doi_str_mv 10.1109/TAP.2021.3069481
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAP_2021_3069481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9395379</ieee_id><sourcerecordid>2568779378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-fbf19c05ee4211bcfa693f9406732e3c6896fd3eeb456e1b9395d6a753bdbc293</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvAc2o-drOb41a0FSqKtugtZHcnbUp3tyZbof-9KS2ehpl57w3zQ-iW0RFjVD3Mi_cRp5yNBJUqydkZGrA0zQnnnJ2jAaUsJ4rL70t0FcI6tkmeJAP0O4EWvOld1-LOYoOnbrkiE-NaPHa181AdVmaD5960oXE9-QC7iVNSeG_2uGh7aFuDv1y_wkXYNw303lV4DKYJeBFcu8SfW-MDnAyv0K-6-hpdWLMJcHOqQ7R4fpo_TsnsbfLyWMxIxRXriS0tUxVNARLOWFlZI5WwKqEyExxEJXMlbS0AyiSVwEolVFpLk6WirMsYIYbo_pi79d3PDkKv193Ox3-C5qnMs0yJLI8qelRVvgvBg9Vb7xrj95pRfaCrI119oKtPdKPl7mhxAPAvP9wXMfMPYoh2xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568779378</pqid></control><display><type>article</type><title>Generation of a High-Gain Bidirectional Transmit-Reflect-Array Antenna With Asymmetric Beams Using Sparse-Array Method</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Shi Lin ; Lin, Xian Qi ; Yan, Yu Hen ; Fan, Yu Lu</creator><creatorcontrib>Liu, Shi Lin ; Lin, Xian Qi ; Yan, Yu Hen ; Fan, Yu Lu</creatorcontrib><description><![CDATA[A high-gain transmit-reflect-array (TRA) antenna with asymmetric bidirectional beams using sparse-array method is presented in this communication. The proposed element consists of three-layer hexagonal-ring-patch (HRP) structure, able to achieve both amplitude (0 or 1) and phase modulation. Based on this kind of element structure, a 125 mm <inline-formula> <tex-math notation="LaTeX">\times \,\, 125 </tex-math></inline-formula> mm square-shaped TRA is designed and fabricated. A 45.3% of the radiation units operate in transmission mode while others in reflection mode. Spatially fed by a conical horn antenna, two well-defined beams are obtained on both sides of the TRA, pointing to the direction of <inline-formula> <tex-math notation="LaTeX">\theta = 0^{\circ } </tex-math></inline-formula> and 170° (<inline-formula> <tex-math notation="LaTeX">\varphi =0^{\circ } </tex-math></inline-formula>), respectively. The measured results show a maximum gain of 21.4 dBi with a 1 dB gain bandwidth of 6.7% for the transmitted beam, and a maximum gain of 24.4 dBi with a 1 dB gain bandwidth of 9.3% for the reflected beam. To the authors' best knowledge, it is the first time that the sparse-array method is employed in spatially fed antenna design. The proposed method can conveniently manipulate the pointing directions and beampattern characteristics of the bidirectional beams, providing a promising candidate for bidirectional wireless communication applications.]]></description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2021.3069481</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antenna arrays ; Antenna design ; Antenna radiation patterns ; Antennas ; Asymmetric bidirectional beams ; Asymmetry ; Bandwidths ; High gain ; Horn antennas ; Particle beams ; Phase modulation ; Reflection ; Reflector antennas ; sparse array ; Transmitting antennas ; transmit–reflect-array (TRA) ; Wireless communications</subject><ispartof>IEEE transactions on antennas and propagation, 2021-09, Vol.69 (9), p.6087-6092</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-fbf19c05ee4211bcfa693f9406732e3c6896fd3eeb456e1b9395d6a753bdbc293</citedby><cites>FETCH-LOGICAL-c291t-fbf19c05ee4211bcfa693f9406732e3c6896fd3eeb456e1b9395d6a753bdbc293</cites><orcidid>0000-0003-1945-9009 ; 0000-0001-6968-8745 ; 0000-0003-1137-2443</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9395379$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9395379$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Shi Lin</creatorcontrib><creatorcontrib>Lin, Xian Qi</creatorcontrib><creatorcontrib>Yan, Yu Hen</creatorcontrib><creatorcontrib>Fan, Yu Lu</creatorcontrib><title>Generation of a High-Gain Bidirectional Transmit-Reflect-Array Antenna With Asymmetric Beams Using Sparse-Array Method</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description><![CDATA[A high-gain transmit-reflect-array (TRA) antenna with asymmetric bidirectional beams using sparse-array method is presented in this communication. The proposed element consists of three-layer hexagonal-ring-patch (HRP) structure, able to achieve both amplitude (0 or 1) and phase modulation. Based on this kind of element structure, a 125 mm <inline-formula> <tex-math notation="LaTeX">\times \,\, 125 </tex-math></inline-formula> mm square-shaped TRA is designed and fabricated. A 45.3% of the radiation units operate in transmission mode while others in reflection mode. Spatially fed by a conical horn antenna, two well-defined beams are obtained on both sides of the TRA, pointing to the direction of <inline-formula> <tex-math notation="LaTeX">\theta = 0^{\circ } </tex-math></inline-formula> and 170° (<inline-formula> <tex-math notation="LaTeX">\varphi =0^{\circ } </tex-math></inline-formula>), respectively. The measured results show a maximum gain of 21.4 dBi with a 1 dB gain bandwidth of 6.7% for the transmitted beam, and a maximum gain of 24.4 dBi with a 1 dB gain bandwidth of 9.3% for the reflected beam. To the authors' best knowledge, it is the first time that the sparse-array method is employed in spatially fed antenna design. The proposed method can conveniently manipulate the pointing directions and beampattern characteristics of the bidirectional beams, providing a promising candidate for bidirectional wireless communication applications.]]></description><subject>Antenna arrays</subject><subject>Antenna design</subject><subject>Antenna radiation patterns</subject><subject>Antennas</subject><subject>Asymmetric bidirectional beams</subject><subject>Asymmetry</subject><subject>Bandwidths</subject><subject>High gain</subject><subject>Horn antennas</subject><subject>Particle beams</subject><subject>Phase modulation</subject><subject>Reflection</subject><subject>Reflector antennas</subject><subject>sparse array</subject><subject>Transmitting antennas</subject><subject>transmit–reflect-array (TRA)</subject><subject>Wireless communications</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wUvAc2o-drOb41a0FSqKtugtZHcnbUp3tyZbof-9KS2ehpl57w3zQ-iW0RFjVD3Mi_cRp5yNBJUqydkZGrA0zQnnnJ2jAaUsJ4rL70t0FcI6tkmeJAP0O4EWvOld1-LOYoOnbrkiE-NaPHa181AdVmaD5960oXE9-QC7iVNSeG_2uGh7aFuDv1y_wkXYNw303lV4DKYJeBFcu8SfW-MDnAyv0K-6-hpdWLMJcHOqQ7R4fpo_TsnsbfLyWMxIxRXriS0tUxVNARLOWFlZI5WwKqEyExxEJXMlbS0AyiSVwEolVFpLk6WirMsYIYbo_pi79d3PDkKv193Ox3-C5qnMs0yJLI8qelRVvgvBg9Vb7xrj95pRfaCrI119oKtPdKPl7mhxAPAvP9wXMfMPYoh2xw</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Liu, Shi Lin</creator><creator>Lin, Xian Qi</creator><creator>Yan, Yu Hen</creator><creator>Fan, Yu Lu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1945-9009</orcidid><orcidid>https://orcid.org/0000-0001-6968-8745</orcidid><orcidid>https://orcid.org/0000-0003-1137-2443</orcidid></search><sort><creationdate>20210901</creationdate><title>Generation of a High-Gain Bidirectional Transmit-Reflect-Array Antenna With Asymmetric Beams Using Sparse-Array Method</title><author>Liu, Shi Lin ; Lin, Xian Qi ; Yan, Yu Hen ; Fan, Yu Lu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-fbf19c05ee4211bcfa693f9406732e3c6896fd3eeb456e1b9395d6a753bdbc293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antenna arrays</topic><topic>Antenna design</topic><topic>Antenna radiation patterns</topic><topic>Antennas</topic><topic>Asymmetric bidirectional beams</topic><topic>Asymmetry</topic><topic>Bandwidths</topic><topic>High gain</topic><topic>Horn antennas</topic><topic>Particle beams</topic><topic>Phase modulation</topic><topic>Reflection</topic><topic>Reflector antennas</topic><topic>sparse array</topic><topic>Transmitting antennas</topic><topic>transmit–reflect-array (TRA)</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Shi Lin</creatorcontrib><creatorcontrib>Lin, Xian Qi</creatorcontrib><creatorcontrib>Yan, Yu Hen</creatorcontrib><creatorcontrib>Fan, Yu Lu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Shi Lin</au><au>Lin, Xian Qi</au><au>Yan, Yu Hen</au><au>Fan, Yu Lu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation of a High-Gain Bidirectional Transmit-Reflect-Array Antenna With Asymmetric Beams Using Sparse-Array Method</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>69</volume><issue>9</issue><spage>6087</spage><epage>6092</epage><pages>6087-6092</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract><![CDATA[A high-gain transmit-reflect-array (TRA) antenna with asymmetric bidirectional beams using sparse-array method is presented in this communication. The proposed element consists of three-layer hexagonal-ring-patch (HRP) structure, able to achieve both amplitude (0 or 1) and phase modulation. Based on this kind of element structure, a 125 mm <inline-formula> <tex-math notation="LaTeX">\times \,\, 125 </tex-math></inline-formula> mm square-shaped TRA is designed and fabricated. A 45.3% of the radiation units operate in transmission mode while others in reflection mode. Spatially fed by a conical horn antenna, two well-defined beams are obtained on both sides of the TRA, pointing to the direction of <inline-formula> <tex-math notation="LaTeX">\theta = 0^{\circ } </tex-math></inline-formula> and 170° (<inline-formula> <tex-math notation="LaTeX">\varphi =0^{\circ } </tex-math></inline-formula>), respectively. The measured results show a maximum gain of 21.4 dBi with a 1 dB gain bandwidth of 6.7% for the transmitted beam, and a maximum gain of 24.4 dBi with a 1 dB gain bandwidth of 9.3% for the reflected beam. To the authors' best knowledge, it is the first time that the sparse-array method is employed in spatially fed antenna design. The proposed method can conveniently manipulate the pointing directions and beampattern characteristics of the bidirectional beams, providing a promising candidate for bidirectional wireless communication applications.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2021.3069481</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1945-9009</orcidid><orcidid>https://orcid.org/0000-0001-6968-8745</orcidid><orcidid>https://orcid.org/0000-0003-1137-2443</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2021-09, Vol.69 (9), p.6087-6092
issn 0018-926X
1558-2221
language eng
recordid cdi_crossref_primary_10_1109_TAP_2021_3069481
source IEEE Electronic Library (IEL)
subjects Antenna arrays
Antenna design
Antenna radiation patterns
Antennas
Asymmetric bidirectional beams
Asymmetry
Bandwidths
High gain
Horn antennas
Particle beams
Phase modulation
Reflection
Reflector antennas
sparse array
Transmitting antennas
transmit–reflect-array (TRA)
Wireless communications
title Generation of a High-Gain Bidirectional Transmit-Reflect-Array Antenna With Asymmetric Beams Using Sparse-Array Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A24%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20of%20a%20High-Gain%20Bidirectional%20Transmit-Reflect-Array%20Antenna%20With%20Asymmetric%20Beams%20Using%20Sparse-Array%20Method&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Liu,%20Shi%20Lin&rft.date=2021-09-01&rft.volume=69&rft.issue=9&rft.spage=6087&rft.epage=6092&rft.pages=6087-6092&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2021.3069481&rft_dat=%3Cproquest_RIE%3E2568779378%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568779378&rft_id=info:pmid/&rft_ieee_id=9395379&rfr_iscdi=true