Generation of a High-Gain Bidirectional Transmit-Reflect-Array Antenna With Asymmetric Beams Using Sparse-Array Method
A high-gain transmit-reflect-array (TRA) antenna with asymmetric bidirectional beams using sparse-array method is presented in this communication. The proposed element consists of three-layer hexagonal-ring-patch (HRP) structure, able to achieve both amplitude (0 or 1) and phase modulation. Based on...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2021-09, Vol.69 (9), p.6087-6092 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6092 |
---|---|
container_issue | 9 |
container_start_page | 6087 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 69 |
creator | Liu, Shi Lin Lin, Xian Qi Yan, Yu Hen Fan, Yu Lu |
description | A high-gain transmit-reflect-array (TRA) antenna with asymmetric bidirectional beams using sparse-array method is presented in this communication. The proposed element consists of three-layer hexagonal-ring-patch (HRP) structure, able to achieve both amplitude (0 or 1) and phase modulation. Based on this kind of element structure, a 125 mm \times \,\, 125 mm square-shaped TRA is designed and fabricated. A 45.3% of the radiation units operate in transmission mode while others in reflection mode. Spatially fed by a conical horn antenna, two well-defined beams are obtained on both sides of the TRA, pointing to the direction of \theta = 0^{\circ } and 170° ( \varphi =0^{\circ } ), respectively. The measured results show a maximum gain of 21.4 dBi with a 1 dB gain bandwidth of 6.7% for the transmitted beam, and a maximum gain of 24.4 dBi with a 1 dB gain bandwidth of 9.3% for the reflected beam. To the authors' best knowledge, it is the first time that the sparse-array method is employed in spatially fed antenna design. The proposed method can conveniently manipulate the pointing directions and beampattern characteristics of the bidirectional beams, providing a promising candidate for bidirectional wireless communication applications. |
doi_str_mv | 10.1109/TAP.2021.3069481 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAP_2021_3069481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9395379</ieee_id><sourcerecordid>2568779378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-fbf19c05ee4211bcfa693f9406732e3c6896fd3eeb456e1b9395d6a753bdbc293</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvAc2o-drOb41a0FSqKtugtZHcnbUp3tyZbof-9KS2ehpl57w3zQ-iW0RFjVD3Mi_cRp5yNBJUqydkZGrA0zQnnnJ2jAaUsJ4rL70t0FcI6tkmeJAP0O4EWvOld1-LOYoOnbrkiE-NaPHa181AdVmaD5960oXE9-QC7iVNSeG_2uGh7aFuDv1y_wkXYNw303lV4DKYJeBFcu8SfW-MDnAyv0K-6-hpdWLMJcHOqQ7R4fpo_TsnsbfLyWMxIxRXriS0tUxVNARLOWFlZI5WwKqEyExxEJXMlbS0AyiSVwEolVFpLk6WirMsYIYbo_pi79d3PDkKv193Ox3-C5qnMs0yJLI8qelRVvgvBg9Vb7xrj95pRfaCrI119oKtPdKPl7mhxAPAvP9wXMfMPYoh2xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568779378</pqid></control><display><type>article</type><title>Generation of a High-Gain Bidirectional Transmit-Reflect-Array Antenna With Asymmetric Beams Using Sparse-Array Method</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Shi Lin ; Lin, Xian Qi ; Yan, Yu Hen ; Fan, Yu Lu</creator><creatorcontrib>Liu, Shi Lin ; Lin, Xian Qi ; Yan, Yu Hen ; Fan, Yu Lu</creatorcontrib><description><![CDATA[A high-gain transmit-reflect-array (TRA) antenna with asymmetric bidirectional beams using sparse-array method is presented in this communication. The proposed element consists of three-layer hexagonal-ring-patch (HRP) structure, able to achieve both amplitude (0 or 1) and phase modulation. Based on this kind of element structure, a 125 mm <inline-formula> <tex-math notation="LaTeX">\times \,\, 125 </tex-math></inline-formula> mm square-shaped TRA is designed and fabricated. A 45.3% of the radiation units operate in transmission mode while others in reflection mode. Spatially fed by a conical horn antenna, two well-defined beams are obtained on both sides of the TRA, pointing to the direction of <inline-formula> <tex-math notation="LaTeX">\theta = 0^{\circ } </tex-math></inline-formula> and 170° (<inline-formula> <tex-math notation="LaTeX">\varphi =0^{\circ } </tex-math></inline-formula>), respectively. The measured results show a maximum gain of 21.4 dBi with a 1 dB gain bandwidth of 6.7% for the transmitted beam, and a maximum gain of 24.4 dBi with a 1 dB gain bandwidth of 9.3% for the reflected beam. To the authors' best knowledge, it is the first time that the sparse-array method is employed in spatially fed antenna design. The proposed method can conveniently manipulate the pointing directions and beampattern characteristics of the bidirectional beams, providing a promising candidate for bidirectional wireless communication applications.]]></description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2021.3069481</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antenna arrays ; Antenna design ; Antenna radiation patterns ; Antennas ; Asymmetric bidirectional beams ; Asymmetry ; Bandwidths ; High gain ; Horn antennas ; Particle beams ; Phase modulation ; Reflection ; Reflector antennas ; sparse array ; Transmitting antennas ; transmit–reflect-array (TRA) ; Wireless communications</subject><ispartof>IEEE transactions on antennas and propagation, 2021-09, Vol.69 (9), p.6087-6092</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-fbf19c05ee4211bcfa693f9406732e3c6896fd3eeb456e1b9395d6a753bdbc293</citedby><cites>FETCH-LOGICAL-c291t-fbf19c05ee4211bcfa693f9406732e3c6896fd3eeb456e1b9395d6a753bdbc293</cites><orcidid>0000-0003-1945-9009 ; 0000-0001-6968-8745 ; 0000-0003-1137-2443</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9395379$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9395379$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Shi Lin</creatorcontrib><creatorcontrib>Lin, Xian Qi</creatorcontrib><creatorcontrib>Yan, Yu Hen</creatorcontrib><creatorcontrib>Fan, Yu Lu</creatorcontrib><title>Generation of a High-Gain Bidirectional Transmit-Reflect-Array Antenna With Asymmetric Beams Using Sparse-Array Method</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description><![CDATA[A high-gain transmit-reflect-array (TRA) antenna with asymmetric bidirectional beams using sparse-array method is presented in this communication. The proposed element consists of three-layer hexagonal-ring-patch (HRP) structure, able to achieve both amplitude (0 or 1) and phase modulation. Based on this kind of element structure, a 125 mm <inline-formula> <tex-math notation="LaTeX">\times \,\, 125 </tex-math></inline-formula> mm square-shaped TRA is designed and fabricated. A 45.3% of the radiation units operate in transmission mode while others in reflection mode. Spatially fed by a conical horn antenna, two well-defined beams are obtained on both sides of the TRA, pointing to the direction of <inline-formula> <tex-math notation="LaTeX">\theta = 0^{\circ } </tex-math></inline-formula> and 170° (<inline-formula> <tex-math notation="LaTeX">\varphi =0^{\circ } </tex-math></inline-formula>), respectively. The measured results show a maximum gain of 21.4 dBi with a 1 dB gain bandwidth of 6.7% for the transmitted beam, and a maximum gain of 24.4 dBi with a 1 dB gain bandwidth of 9.3% for the reflected beam. To the authors' best knowledge, it is the first time that the sparse-array method is employed in spatially fed antenna design. The proposed method can conveniently manipulate the pointing directions and beampattern characteristics of the bidirectional beams, providing a promising candidate for bidirectional wireless communication applications.]]></description><subject>Antenna arrays</subject><subject>Antenna design</subject><subject>Antenna radiation patterns</subject><subject>Antennas</subject><subject>Asymmetric bidirectional beams</subject><subject>Asymmetry</subject><subject>Bandwidths</subject><subject>High gain</subject><subject>Horn antennas</subject><subject>Particle beams</subject><subject>Phase modulation</subject><subject>Reflection</subject><subject>Reflector antennas</subject><subject>sparse array</subject><subject>Transmitting antennas</subject><subject>transmit–reflect-array (TRA)</subject><subject>Wireless communications</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wUvAc2o-drOb41a0FSqKtugtZHcnbUp3tyZbof-9KS2ehpl57w3zQ-iW0RFjVD3Mi_cRp5yNBJUqydkZGrA0zQnnnJ2jAaUsJ4rL70t0FcI6tkmeJAP0O4EWvOld1-LOYoOnbrkiE-NaPHa181AdVmaD5960oXE9-QC7iVNSeG_2uGh7aFuDv1y_wkXYNw303lV4DKYJeBFcu8SfW-MDnAyv0K-6-hpdWLMJcHOqQ7R4fpo_TsnsbfLyWMxIxRXriS0tUxVNARLOWFlZI5WwKqEyExxEJXMlbS0AyiSVwEolVFpLk6WirMsYIYbo_pi79d3PDkKv193Ox3-C5qnMs0yJLI8qelRVvgvBg9Vb7xrj95pRfaCrI119oKtPdKPl7mhxAPAvP9wXMfMPYoh2xw</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Liu, Shi Lin</creator><creator>Lin, Xian Qi</creator><creator>Yan, Yu Hen</creator><creator>Fan, Yu Lu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1945-9009</orcidid><orcidid>https://orcid.org/0000-0001-6968-8745</orcidid><orcidid>https://orcid.org/0000-0003-1137-2443</orcidid></search><sort><creationdate>20210901</creationdate><title>Generation of a High-Gain Bidirectional Transmit-Reflect-Array Antenna With Asymmetric Beams Using Sparse-Array Method</title><author>Liu, Shi Lin ; Lin, Xian Qi ; Yan, Yu Hen ; Fan, Yu Lu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-fbf19c05ee4211bcfa693f9406732e3c6896fd3eeb456e1b9395d6a753bdbc293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antenna arrays</topic><topic>Antenna design</topic><topic>Antenna radiation patterns</topic><topic>Antennas</topic><topic>Asymmetric bidirectional beams</topic><topic>Asymmetry</topic><topic>Bandwidths</topic><topic>High gain</topic><topic>Horn antennas</topic><topic>Particle beams</topic><topic>Phase modulation</topic><topic>Reflection</topic><topic>Reflector antennas</topic><topic>sparse array</topic><topic>Transmitting antennas</topic><topic>transmit–reflect-array (TRA)</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Shi Lin</creatorcontrib><creatorcontrib>Lin, Xian Qi</creatorcontrib><creatorcontrib>Yan, Yu Hen</creatorcontrib><creatorcontrib>Fan, Yu Lu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Shi Lin</au><au>Lin, Xian Qi</au><au>Yan, Yu Hen</au><au>Fan, Yu Lu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation of a High-Gain Bidirectional Transmit-Reflect-Array Antenna With Asymmetric Beams Using Sparse-Array Method</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>69</volume><issue>9</issue><spage>6087</spage><epage>6092</epage><pages>6087-6092</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract><![CDATA[A high-gain transmit-reflect-array (TRA) antenna with asymmetric bidirectional beams using sparse-array method is presented in this communication. The proposed element consists of three-layer hexagonal-ring-patch (HRP) structure, able to achieve both amplitude (0 or 1) and phase modulation. Based on this kind of element structure, a 125 mm <inline-formula> <tex-math notation="LaTeX">\times \,\, 125 </tex-math></inline-formula> mm square-shaped TRA is designed and fabricated. A 45.3% of the radiation units operate in transmission mode while others in reflection mode. Spatially fed by a conical horn antenna, two well-defined beams are obtained on both sides of the TRA, pointing to the direction of <inline-formula> <tex-math notation="LaTeX">\theta = 0^{\circ } </tex-math></inline-formula> and 170° (<inline-formula> <tex-math notation="LaTeX">\varphi =0^{\circ } </tex-math></inline-formula>), respectively. The measured results show a maximum gain of 21.4 dBi with a 1 dB gain bandwidth of 6.7% for the transmitted beam, and a maximum gain of 24.4 dBi with a 1 dB gain bandwidth of 9.3% for the reflected beam. To the authors' best knowledge, it is the first time that the sparse-array method is employed in spatially fed antenna design. The proposed method can conveniently manipulate the pointing directions and beampattern characteristics of the bidirectional beams, providing a promising candidate for bidirectional wireless communication applications.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2021.3069481</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1945-9009</orcidid><orcidid>https://orcid.org/0000-0001-6968-8745</orcidid><orcidid>https://orcid.org/0000-0003-1137-2443</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2021-09, Vol.69 (9), p.6087-6092 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAP_2021_3069481 |
source | IEEE Electronic Library (IEL) |
subjects | Antenna arrays Antenna design Antenna radiation patterns Antennas Asymmetric bidirectional beams Asymmetry Bandwidths High gain Horn antennas Particle beams Phase modulation Reflection Reflector antennas sparse array Transmitting antennas transmit–reflect-array (TRA) Wireless communications |
title | Generation of a High-Gain Bidirectional Transmit-Reflect-Array Antenna With Asymmetric Beams Using Sparse-Array Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A24%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20of%20a%20High-Gain%20Bidirectional%20Transmit-Reflect-Array%20Antenna%20With%20Asymmetric%20Beams%20Using%20Sparse-Array%20Method&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Liu,%20Shi%20Lin&rft.date=2021-09-01&rft.volume=69&rft.issue=9&rft.spage=6087&rft.epage=6092&rft.pages=6087-6092&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2021.3069481&rft_dat=%3Cproquest_RIE%3E2568779378%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568779378&rft_id=info:pmid/&rft_ieee_id=9395379&rfr_iscdi=true |