A W-Band Integrated Tapered Array Antenna With Series Feed for Noncontact Vital Sign Detection
A W -band integrated tapered array antenna with series feed is presented. To reduce the fabrication cost, the antenna is designed on a single layer with the standard printed circuit board (PCB) process. In the array design, a novel coplanar waveguide (CPW) feeding structure is proposed to simplify...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2021-06, Vol.69 (6), p.3234-3243 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3243 |
---|---|
container_issue | 6 |
container_start_page | 3234 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 69 |
creator | Zhang, Tao Zhu, Zhangming Ma, Xujun Xia, Haiyang Li, Lianming Cui, Tie Jun |
description | A W -band integrated tapered array antenna with series feed is presented. To reduce the fabrication cost, the antenna is designed on a single layer with the standard printed circuit board (PCB) process. In the array design, a novel coplanar waveguide (CPW) feeding structure is proposed to simplify the feeding network and fabrication by avoiding three-way power divider and via process. Considering the interconnection reliability and cost, the wire-bonding technique is used to connect the integrated circuit (IC) and antenna. To compensate for the parasitic effect of the bond wire and enhance the bandwidth of the antenna with interconnection, an LCL compensation structure is introduced and codesigned with the array antenna, achieving wideband-impedance feature. To demonstrate the validity of the design, several prototypes of the proposed antennas are implemented and measured. The measured results show that the array antenna with wire-bonding interconnection achieves a fractional impedance bandwidth ( \vert S_{11}\vert < -10 dB) of 13.2%, sidelobe level less than −15 dB at 100 GHz, and ~15 dBi gain. The simulated radiation efficiency is larger than 80% from 98 to 104 GHz. With our designed 100 GHz CMOS radar transceiver, the proposed antenna is used to detect the human vital sign. |
doi_str_mv | 10.1109/TAP.2020.3030999 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAP_2020_3030999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9234079</ieee_id><sourcerecordid>2536035873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-2816a53a2893bcf0f4cbd2652514be8a67e715495ddea6f20dcf02d0525e58a83</originalsourceid><addsrcrecordid>eNo9kEFLAzEQRoMoWKt3wUvA89ZJstlNjmu1WigqtFpPhnR3tm6p2ZpND_33prR4-hjmfTPwCLlmMGAM9N2seBtw4DAQIEBrfUJ6TEqVcM7ZKekBMJVonn2ek4uuW8UxVWnaI18FnSf31lV07AIuvQ1Y0ZndoI9ZeG93tIgL5yydN-GbTtE32NERxnXdevrSurJ1wZaBfjTBrum0WTr6gAHL0LTukpzVdt3h1TH75H30OBs-J5PXp_GwmCSlECIkXLHMSmG50mJR1lCn5aLimeSSpQtUNssxZzLVsqrQZjWHKkK8ggigVFaJPrk93N349neLXTCrdutdfGm4FBkIqXIRKThQpW-7zmNtNr75sX5nGJi9RRMtmr1Fc7QYKzeHSoOI_7jmIoVciz-UHmyL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536035873</pqid></control><display><type>article</type><title>A W-Band Integrated Tapered Array Antenna With Series Feed for Noncontact Vital Sign Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Tao ; Zhu, Zhangming ; Ma, Xujun ; Xia, Haiyang ; Li, Lianming ; Cui, Tie Jun</creator><creatorcontrib>Zhang, Tao ; Zhu, Zhangming ; Ma, Xujun ; Xia, Haiyang ; Li, Lianming ; Cui, Tie Jun</creatorcontrib><description><![CDATA[A <inline-formula> <tex-math notation="LaTeX">W </tex-math></inline-formula>-band integrated tapered array antenna with series feed is presented. To reduce the fabrication cost, the antenna is designed on a single layer with the standard printed circuit board (PCB) process. In the array design, a novel coplanar waveguide (CPW) feeding structure is proposed to simplify the feeding network and fabrication by avoiding three-way power divider and via process. Considering the interconnection reliability and cost, the wire-bonding technique is used to connect the integrated circuit (IC) and antenna. To compensate for the parasitic effect of the bond wire and enhance the bandwidth of the antenna with interconnection, an LCL compensation structure is introduced and codesigned with the array antenna, achieving wideband-impedance feature. To demonstrate the validity of the design, several prototypes of the proposed antennas are implemented and measured. The measured results show that the array antenna with wire-bonding interconnection achieves a fractional impedance bandwidth (<inline-formula> <tex-math notation="LaTeX">\vert S_{11}\vert < -10 </tex-math></inline-formula> dB) of 13.2%, sidelobe level less than −15 dB at 100 GHz, and ~15 dBi gain. The simulated radiation efficiency is larger than 80% from 98 to 104 GHz. With our designed 100 GHz CMOS radar transceiver, the proposed antenna is used to detect the human vital sign.]]></description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2020.3030999</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">W -band ; Antenna arrays ; Antennas ; Array antenna ; Bandwidth ; Bandwidths ; Bonding ; Circuit boards ; Circuit design ; CMOS ; coplanar waveguide (CPW) ; Coplanar waveguides ; Design ; Impedance ; integrated antenna ; Integrated circuit interconnections ; Integrated circuits ; low sidelobe level (SLL) ; Parasitic elements (antennas) ; Printed circuits ; series-fed antenna ; Sidelobes ; Wire ; wire-bonding interconnection ; Wires</subject><ispartof>IEEE transactions on antennas and propagation, 2021-06, Vol.69 (6), p.3234-3243</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-2816a53a2893bcf0f4cbd2652514be8a67e715495ddea6f20dcf02d0525e58a83</citedby><cites>FETCH-LOGICAL-c333t-2816a53a2893bcf0f4cbd2652514be8a67e715495ddea6f20dcf02d0525e58a83</cites><orcidid>0000-0002-5862-1497 ; 0000-0002-7764-1928 ; 0000-0002-6984-8611 ; 0000-0003-1873-4806 ; 0000-0003-4508-3981</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9234079$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9234079$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Zhu, Zhangming</creatorcontrib><creatorcontrib>Ma, Xujun</creatorcontrib><creatorcontrib>Xia, Haiyang</creatorcontrib><creatorcontrib>Li, Lianming</creatorcontrib><creatorcontrib>Cui, Tie Jun</creatorcontrib><title>A W-Band Integrated Tapered Array Antenna With Series Feed for Noncontact Vital Sign Detection</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description><![CDATA[A <inline-formula> <tex-math notation="LaTeX">W </tex-math></inline-formula>-band integrated tapered array antenna with series feed is presented. To reduce the fabrication cost, the antenna is designed on a single layer with the standard printed circuit board (PCB) process. In the array design, a novel coplanar waveguide (CPW) feeding structure is proposed to simplify the feeding network and fabrication by avoiding three-way power divider and via process. Considering the interconnection reliability and cost, the wire-bonding technique is used to connect the integrated circuit (IC) and antenna. To compensate for the parasitic effect of the bond wire and enhance the bandwidth of the antenna with interconnection, an LCL compensation structure is introduced and codesigned with the array antenna, achieving wideband-impedance feature. To demonstrate the validity of the design, several prototypes of the proposed antennas are implemented and measured. The measured results show that the array antenna with wire-bonding interconnection achieves a fractional impedance bandwidth (<inline-formula> <tex-math notation="LaTeX">\vert S_{11}\vert < -10 </tex-math></inline-formula> dB) of 13.2%, sidelobe level less than −15 dB at 100 GHz, and ~15 dBi gain. The simulated radiation efficiency is larger than 80% from 98 to 104 GHz. With our designed 100 GHz CMOS radar transceiver, the proposed antenna is used to detect the human vital sign.]]></description><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">W -band</subject><subject>Antenna arrays</subject><subject>Antennas</subject><subject>Array antenna</subject><subject>Bandwidth</subject><subject>Bandwidths</subject><subject>Bonding</subject><subject>Circuit boards</subject><subject>Circuit design</subject><subject>CMOS</subject><subject>coplanar waveguide (CPW)</subject><subject>Coplanar waveguides</subject><subject>Design</subject><subject>Impedance</subject><subject>integrated antenna</subject><subject>Integrated circuit interconnections</subject><subject>Integrated circuits</subject><subject>low sidelobe level (SLL)</subject><subject>Parasitic elements (antennas)</subject><subject>Printed circuits</subject><subject>series-fed antenna</subject><subject>Sidelobes</subject><subject>Wire</subject><subject>wire-bonding interconnection</subject><subject>Wires</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQRoMoWKt3wUvA89ZJstlNjmu1WigqtFpPhnR3tm6p2ZpND_33prR4-hjmfTPwCLlmMGAM9N2seBtw4DAQIEBrfUJ6TEqVcM7ZKekBMJVonn2ek4uuW8UxVWnaI18FnSf31lV07AIuvQ1Y0ZndoI9ZeG93tIgL5yydN-GbTtE32NERxnXdevrSurJ1wZaBfjTBrum0WTr6gAHL0LTukpzVdt3h1TH75H30OBs-J5PXp_GwmCSlECIkXLHMSmG50mJR1lCn5aLimeSSpQtUNssxZzLVsqrQZjWHKkK8ggigVFaJPrk93N349neLXTCrdutdfGm4FBkIqXIRKThQpW-7zmNtNr75sX5nGJi9RRMtmr1Fc7QYKzeHSoOI_7jmIoVciz-UHmyL</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Zhang, Tao</creator><creator>Zhu, Zhangming</creator><creator>Ma, Xujun</creator><creator>Xia, Haiyang</creator><creator>Li, Lianming</creator><creator>Cui, Tie Jun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5862-1497</orcidid><orcidid>https://orcid.org/0000-0002-7764-1928</orcidid><orcidid>https://orcid.org/0000-0002-6984-8611</orcidid><orcidid>https://orcid.org/0000-0003-1873-4806</orcidid><orcidid>https://orcid.org/0000-0003-4508-3981</orcidid></search><sort><creationdate>20210601</creationdate><title>A W-Band Integrated Tapered Array Antenna With Series Feed for Noncontact Vital Sign Detection</title><author>Zhang, Tao ; Zhu, Zhangming ; Ma, Xujun ; Xia, Haiyang ; Li, Lianming ; Cui, Tie Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-2816a53a2893bcf0f4cbd2652514be8a67e715495ddea6f20dcf02d0525e58a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">W -band</topic><topic>Antenna arrays</topic><topic>Antennas</topic><topic>Array antenna</topic><topic>Bandwidth</topic><topic>Bandwidths</topic><topic>Bonding</topic><topic>Circuit boards</topic><topic>Circuit design</topic><topic>CMOS</topic><topic>coplanar waveguide (CPW)</topic><topic>Coplanar waveguides</topic><topic>Design</topic><topic>Impedance</topic><topic>integrated antenna</topic><topic>Integrated circuit interconnections</topic><topic>Integrated circuits</topic><topic>low sidelobe level (SLL)</topic><topic>Parasitic elements (antennas)</topic><topic>Printed circuits</topic><topic>series-fed antenna</topic><topic>Sidelobes</topic><topic>Wire</topic><topic>wire-bonding interconnection</topic><topic>Wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Zhu, Zhangming</creatorcontrib><creatorcontrib>Ma, Xujun</creatorcontrib><creatorcontrib>Xia, Haiyang</creatorcontrib><creatorcontrib>Li, Lianming</creatorcontrib><creatorcontrib>Cui, Tie Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Tao</au><au>Zhu, Zhangming</au><au>Ma, Xujun</au><au>Xia, Haiyang</au><au>Li, Lianming</au><au>Cui, Tie Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A W-Band Integrated Tapered Array Antenna With Series Feed for Noncontact Vital Sign Detection</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>69</volume><issue>6</issue><spage>3234</spage><epage>3243</epage><pages>3234-3243</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract><![CDATA[A <inline-formula> <tex-math notation="LaTeX">W </tex-math></inline-formula>-band integrated tapered array antenna with series feed is presented. To reduce the fabrication cost, the antenna is designed on a single layer with the standard printed circuit board (PCB) process. In the array design, a novel coplanar waveguide (CPW) feeding structure is proposed to simplify the feeding network and fabrication by avoiding three-way power divider and via process. Considering the interconnection reliability and cost, the wire-bonding technique is used to connect the integrated circuit (IC) and antenna. To compensate for the parasitic effect of the bond wire and enhance the bandwidth of the antenna with interconnection, an LCL compensation structure is introduced and codesigned with the array antenna, achieving wideband-impedance feature. To demonstrate the validity of the design, several prototypes of the proposed antennas are implemented and measured. The measured results show that the array antenna with wire-bonding interconnection achieves a fractional impedance bandwidth (<inline-formula> <tex-math notation="LaTeX">\vert S_{11}\vert < -10 </tex-math></inline-formula> dB) of 13.2%, sidelobe level less than −15 dB at 100 GHz, and ~15 dBi gain. The simulated radiation efficiency is larger than 80% from 98 to 104 GHz. With our designed 100 GHz CMOS radar transceiver, the proposed antenna is used to detect the human vital sign.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2020.3030999</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5862-1497</orcidid><orcidid>https://orcid.org/0000-0002-7764-1928</orcidid><orcidid>https://orcid.org/0000-0002-6984-8611</orcidid><orcidid>https://orcid.org/0000-0003-1873-4806</orcidid><orcidid>https://orcid.org/0000-0003-4508-3981</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2021-06, Vol.69 (6), p.3234-3243 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAP_2020_3030999 |
source | IEEE Electronic Library (IEL) |
subjects | <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">W -band Antenna arrays Antennas Array antenna Bandwidth Bandwidths Bonding Circuit boards Circuit design CMOS coplanar waveguide (CPW) Coplanar waveguides Design Impedance integrated antenna Integrated circuit interconnections Integrated circuits low sidelobe level (SLL) Parasitic elements (antennas) Printed circuits series-fed antenna Sidelobes Wire wire-bonding interconnection Wires |
title | A W-Band Integrated Tapered Array Antenna With Series Feed for Noncontact Vital Sign Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A26%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20W-Band%20Integrated%20Tapered%20Array%20Antenna%20With%20Series%20Feed%20for%20Noncontact%20Vital%20Sign%20Detection&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Zhang,%20Tao&rft.date=2021-06-01&rft.volume=69&rft.issue=6&rft.spage=3234&rft.epage=3243&rft.pages=3234-3243&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2020.3030999&rft_dat=%3Cproquest_RIE%3E2536035873%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536035873&rft_id=info:pmid/&rft_ieee_id=9234079&rfr_iscdi=true |